
WebSocket 内存马，一种新型
内存马技术 - 先知社区

WebSocket 是一种全双工通信协议，即客户端可以向服务端发

送请求，服务端也可以主动向客户端推送数据。这样的特点，使

得它在一些实时性要求比较高的场景效果斐然（比如微信朋友圈

实时通知、在线协同编辑等）。主流浏览器以及一些常见服务端

通信框架（Tomcat、netty、undertow、webLogic 等）都对

WebSocket 进行了技术支持。

2013 年以前还没出 JSR356 标准，Tomcat 就对 Websocket

做了支持，自定义 API，再后来有了 JSR356，Tomcat 立马紧

跟潮流，废弃自定义的 API，实现 JSR356 那一套，这就使得在

Tomcat7.0.47 之后的版本和之前的版本实现方式并不一样，接

入方式也改变了。

JSR356 是 java 制定的 websocket 编程规范，属于 Java EE 7

的一部分，所以要实现 websocket 内存马并不需要任何第三方

依赖

@ServerEndpoint(value = "/ws/{userId}", encoders =
{MessageEncoder.class}, decoders = {MessageDecoder.class},
configurator = MyServerConfigurator.class)

先知社区，先知安全技术社区“
1. 前言

2. 版本

3. 服务端实现方式

（1）注解方式

Tomcat 在启动时会默认通过 WsSci 内的

ServletContainerInitializer 初始化 Listener 和 servlet。然后再

扫描 classpath 下带有 @ServerEndpoint 注解的类进行

addEndpoint 加入 websocket 服务

所以即使 Tomcat 没有扫描到 @ServerEndpoint 注解的类，也

会进行 Listener 和 servlet 注册，这就是为什么所有 Tomcat 启

动都能在 memshell scanner 内看到 WsFilter

(https://xzfile.aliyuncs.com/media/upload/picture/2022071

5175317-f3a68f56-0423-1.png)

继承抽象类 Endpoint 方式比加注解 @ServerEndpoint 方式更麻

烦，主要是需要自己实现 MessageHandler 和

ServerApplicationConfig 。 @ServerEndpoint 的话都是使用默认

的，原理上差不多，只是注解更自动化，更简洁

可以用代码更方便的控制 ServerEndpointConfig 内的属性

ServerEndpointConfig serverEndpointConfig =
ServerEndpointConfig.Builder.create(WebSocketServerEndpoin
t3.class,
"/ws/{userId}").decoders(decoderList).encoders(encoderList
).configurator(new MyServerConfigurator()).build();

之前提到过 Tomcat 在启动时会默认通过 WsSci 内的

ServletContainerInitializer 初始化 Listener 和 servlet。然后再

扫描 classpath 下带有 @ServerEndpoint 注解的类进行

addEndpoint 加入 websocket 服务

那如果在服务启动后我们再 addEndpoint 加入 websocket 服务

行不行呢？答案是肯定的，而且非常简单只需要三步。创建一个

（2）继承抽象类 Endpoint 方式

3.websocket 内存马实现方法

https://xzfile.aliyuncs.com/media/upload/picture/20220715175317-f3a68f56-0423-1.png

ServerEndpointConfig，获取 ws ServerContainer，加入

ServerEndpointConfig，即可

ServerEndpointConfig config =
ServerEndpointConfig.Builder.create(EndpointInject.class,
"/ws").build();

ServerContainer container = (ServerContainer)
req.getServletContext().getAttribute(ServerContainer.class
.getName());

container.addEndpoint(config);

首先利用 i.jsp 注入一个 websocket 服务，路径为 / x，注入后

利用 ws 连接即可执行命令

(https://xzfile.aliyuncs.com/media/upload/picture/2022071

5175328-fa4c458a-0423-1.png)

且通过 memshell scanner 查询不到任何异常（因为根本就没注

册新的 Listener、servlet 或者 Filter）

4. 效果

https://xzfile.aliyuncs.com/media/upload/picture/20220715175328-fa4c458a-0423-1.png
https://xzfile.aliyuncs.com/media/upload/picture/20220715175342-02baaafe-0424-1.png

(https://xzfile.aliyuncs.com/media/upload/picture/2022071

5175342-02baaafe-0424-1.png)

WebSocket 是一种全双工通信协议，它可以用来做代理，且速

度和普通的 TCP 代理一样快，这也是我研究 websocket 内存马

的原因。

例如有一台不出网主机，有反序列化漏洞。

以前在这种场景下，可能会考虑上 reGeorg 或者利用端口复用

来搭建代理。

现在可以利用反序列化漏洞直接注入 websocket 代理内存马，

然后直接连上用上全双工通信协议的代理。

注入完内存马以后，使用 Gost： https://github.com/go-

gost/gost (https://github.com/go-gost/gost) 连接代理

./gost -L "socks5://:1080" -F "ws://127.0.0.1:8080?
path=/proxy"

然后连接本地 1080 端口 socks5 即可使用代理

想要使用 ws 马首先得支持连接 ws 协议的工具，目前市面的

webshell 管理工具都要从源码上修改才能支持 ws 协议

具体实现过程也并不复杂，相当于只是替换了协议，内容其实可

以不变。例如给出的哥斯拉支持样例，基本逻辑并没发生改变，

只是协议变了

还有一个问题是 ws 马必须先注入再连接，并不能直接连接 jsp

马。

然而例如哥斯拉的 jsp 马本身就是支持远程代码执行，那么 jsp

马其实可以保持不变就用哥斯拉原版，但发送 class 要修改，先

发送过去先初始化注册 ws 马的 class 连上 ws 以后再初始化

5. 代理

6. 多功能 shell 实现

https://xzfile.aliyuncs.com/media/upload/picture/20220715175342-02baaafe-0424-1.png
https://github.com/go-gost/gost

发送过去先初始化注册 ws 马的 class，连上 ws 以后再初始化

恶意 class，多一步，第二步连接的时候使用 ws 连接。

(https://xzfile.aliyuncs.com/media/upload/picture/2022071

5175553-50a36ac6-0424-1.jpg)

如果是内存注入的内存马则不需要连接 jsp，直接连接 ws

https://xzfile.aliyuncs.com/media/upload/picture/20220715175553-50a36ac6-0424-1.jpg
https://xzfile.aliyuncs.com/media/upload/picture/20220715175445-27d117d8-0424-1.jpg

(https://xzfile.aliyuncs.com/media/upload/picture/2022071

5175445-27d117d8-0424-1.jpg)

完整代码： https://github.com/veo/wsMemShell

(https://github.com/veo/wsMemShell)

本文章著作权归作者所有。转载请注明出处！

https://github.com/veo (https://github.com/veo)

版权声明

https://xzfile.aliyuncs.com/media/upload/picture/20220715175445-27d117d8-0424-1.jpg
https://github.com/veo/wsMemShell
https://github.com/veo

