
1

RuoYi-Flowable-Plus

漏洞利用

分析

使用版本：v0.8.3

下载地址：https://gitee.com/KonBAI-Q/ruoyi-flowable-plus

安装：http://konbai-q.gitee.io/ruoyi-flowable-plus-

vuepress/document/%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B/%E5%B7%A5%E7

%A8%8B%E5%AF%BC%E5%85%A5.html#%E5%AF%BC%E5%85%A5%E6%95%B0%E6%8D

%AE%E5%BA%93

方法一（使用java类）：

条件：1.需要公共无参构造函数（因为使用了newinstance来实列化）

 2.需要实现JavaDelegate接口，存在excute函数

满足条件：

类一：org.flowable.engine.impl.test.NoOpServiceTask

添加name表达式：

${''.getClass().forName('java.lang.Runtime').getMethod('getRuntime').invoke(null).exec('calc.exe')}

新建表单并保存，

漏洞利用

https://gitee.com/KonBAI-Q/ruoyi-flowable-plus
http://konbai-q.gitee.io/ruoyi-flowable-plus-vuepress/document/%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B/%E5%B7%A5%E7%A8%8B%E5%AF%BC%E5%85%A5.html#%E5%AF%BC%E5%85%A5%E6%95%B0%E6%8D%AE%E5%BA%93
http://konbai-q.gitee.io/ruoyi-flowable-plus-vuepress/document/%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B/%E5%B7%A5%E7%A8%8B%E5%AF%BC%E5%85%A5.html#%E5%AF%BC%E5%85%A5%E6%95%B0%E6%8D%AE%E5%BA%93
http://konbai-q.gitee.io/ruoyi-flowable-plus-vuepress/document/%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B/%E5%B7%A5%E7%A8%8B%E5%AF%BC%E5%85%A5.html#%E5%AF%BC%E5%85%A5%E6%95%B0%E6%8D%AE%E5%BA%93
http://konbai-q.gitee.io/ruoyi-flowable-plus-vuepress/document/%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B/%E5%B7%A5%E7%A8%8B%E5%AF%BC%E5%85%A5.html#%E5%AF%BC%E5%85%A5%E6%95%B0%E6%8D%AE%E5%BA%93

2

新增流程分类，

3

新增流程模型，

点击设计，

4

点击创建开始事件，并添加监听器，

设置监听器的内容，

5

在选择我们之前新建的表单，

6

保存流程，

7

流程模型新增成功后，需要点击部署，

新建流程点击发起，

8

随意输入值点击提交，命令执行成功，

9

类二：org.flowable.engine.impl.bpmn.listener.ScriptExecutionListener

script：var System = java.lang.Runtime.getRuntime().exec("calc");

language：js

10

将流程模型里面的监听器改为以下内容，

需要点击部署（不然流程模型没有被更改），

新建流程中发起，点击提交成功触发漏洞，

11

方法二 （使用表达式或者代理表达式）：

12

${''.getClass().forName('java.lang.Runtime').getMethod('getRuntime').invoke(null).exec('calc.exe')}

13

点击部署后，发起流程，命令执行成功，

使用java类（代理表达式分析于java类利用方式相似）

org.flowable.engine.impl.bpmn.listener.ListenerNotificationHelper#executeExecutionListeners

分析

14

进入createClassDelegateExecutionListener函数，调用create函数，

进入create函数，创建一个ClassDelegate类，并将我们的监听器赋值到此类中，

15

返回到

org.flowable.engine.impl.bpmn.listener.ListenerNotificationHelper#executeExecutionListeners，

执行ClassDelegate类notify函数，

16

17

最终执行到defaultInstantiateDelegate函数，实列化我们的监听器，

然后返回到DelegateExecutionListener的构造函数中，

18

再之后，返回到notify函数，执行notify函数，那么就应该调用的是DelegateExecutionListener类的

notify函数，

19

注意，这里需要满足实现JavaDelegate接口或者ExcutionListener接口，

之后经过一系列函数调用，

20

最终解析表达式，命令执行成功，

21

使用表达式

org.flowable.engine.impl.bpmn.listener.ListenerNotificationHelper#executeExecutionListeners

这里直接创建ExpressionExecutionListener类，

22

然后调用ExpressionExecutionListener类的notify函数，最终解析表达式，命令执行成功，

23

