
如何快速复现/挖掘一个漏洞？
CodeAuditAssistant高阶技巧

我和 Unam4 最近发布了一个新的 IDEA 代码审计辅助插件 CodeAuditAssistant ，测试阶段目前也收到了很多反
馈，那么今天就从一个漏洞实战案例出发来详细讲解下插件的使用技巧。

第零步：关于调用链
调用链（Call Chain）顾名思义就是方法间的调用所组成的链条，在人工代码审计中我们往往更想快速找到方法被调
用的地方进行进一步的确认。

那么这个过程中对于单线程执行的程序（比如我录得视频中的 Log4j ）其实检测是相对简单的（只需要处理好抽象/

接口即可，必要时处理依赖注入等，这里不展开说），但是对于一些多线程 执行才能触发的漏洞（比如定时任务），其
实是不能轻易从一个调用链发现整个漏洞的调用的（因为设置定时任务和运行定时任务可能并不是同一个线程），所以
本文从多线程漏洞的识别方式出发，带你感受 CodeAuditAssistant 带给你的效率提升。

第一步：查找SInk
如果不是很特殊的触发点，你都可以通过 SinkFinder/Sink 查找器进行查找，当然对于你自己的独家Sink，可以用
传统ctrlf大法或者使用后续上线的 Sink自定义功能。

完成调用图构建和 Sink初始化之后，通过Sink查找我们找到了一个危险的 JNDI方法：

接下来我们右键点击该方法后，选择作为Sink点搜索：

af://n0
af://n4
af://n18

现在你就可以从搜索结果中看到这个方法的调用链了，我们展开调用链进行查看：

跟踪到第一个方法 run 中，在这里，调用链的第一部分结束，程序运行时的最后一段结束，接下来我们就要跟踪该类
中的字段了，通过查看字段定义，我们继续跟踪到 monitorId 字段：

ctrl点击并发现这个字段被赋值的地方：

进入后，我们继续手动跟踪，找到task方法：

接下来找到对 task赋值的地方后，我们再次将这个方法作为Sink搜索：

至此，你找到了这个这个漏洞的起始点 Service 层的 detectMonitor方法：

那么我们再来实际运行一下查看，发现多线程调用中确实同上所述：

这个也就是我和Unam4的Hertzbeat的一系列绕过漏洞的触发过程了，最后附上插件连接：

https://github.com/SpringKill-team/CodeAuditAssistant

https://github.com/SpringKill-team/CodeAuditAssistant

	如何快速复现/挖掘一个漏洞？CodeAuditAssistant高阶技巧
	第零步：关于调用链
	第一步：查找SInk

