
/

借github上韩国师傅的一个源码实例再次理解.htaccess的功效

今天翻了翻GitHub，很巧发现一个韩国师傅的实例；也是关于.htaccess的，就继续理解了一波；稍微修改了几行代码来理解一下；先来发出源码；

/

/

我们简单的审计；很明显，列出了禁止的后缀；但是很明显，这里没有禁用.htaccess；这里昨天的那片博客也已经讲的很明白，.htaccess是一个神器，我们可

以篡改相关目录的php配置，导致解析出现我们遇期的效果；继续审计代码；首先一个if语句就ban掉了纯后缀的文件。例如(.htaccess);然后服务器创建临时文

件；$name取得我们的原始文件名字；然后再以‘.’为分界点打断为数组，（这里我刚开始将其错看成了implode，怎么都说不通，太无语了）；打断为数组之

后删除最后一个元素；

这里要注意一下，虽然删除了最有一个元素，但是这里有个小坑，要看仔细，$ext是记录了被删除的内容，不是删除后的数组；这里本地复现这段代码；我们直

接传入文件名；

/

/

同过复现我们可以看到，这里确实是的，$ext记录的是我们删除的后缀，而并不是我们删除后的数组；通过上面的实验效果我们可以看到数组第一个元素已经为

空了所以反观代码下的empty($parts[0])也是达成的，但是删除就没有效果了这里判断元素数目是否为空；这里有个骚操作；因为我们看到之前的explode是按

照以'.'为分割符来打断的；这里经过删除以后按理说是没有了，我们测试如下；看到这里元素数目确实为0；这样的话，我们是过不了 if (count($parts) ===

0) 这个waf的；但是我们反观一下，如果传入 ..htaccess 呢？那么就会打断为3个元素，删除前后两个还有中间的空元素，只要有元素存在，那么count就不为

0；就可以绕过去；这里测试如下；对比两张图会理解的更清楚；

/

接着我们看到waf；

/

这个waf我们早已经可以绕过了；因为并没有出现敏感的字符；

再来看到又一个waf；

这个waf仅仅是判断了imagetype（读取第一个字节并且检查签名）这里我们抓包修改利用宏定义就可以；但是在修改的时候还需要满足我们.htaccess的语

法；这个waf和后面的waf相结合，就很恶心人；这里难点是在后面的那个waf；要图片满足为1337*1337

$image_size变量中存储了我们服务器创建的临时文件的大小；这里我翻了一下php的官方文档；确定了一下；有个xbm文件；这也是一种图片文件，我们本地

测试，改为.xbm看看效果，发现可以成功显示；(图片内容就是phpinfo)

/

那么我们就可用宏定义在这里伪造为xbm文件了；下面就放出有效的xbm文件头；

/

define 4c11f3876d494218ff327e3ca6ac824f_width xxxx（大小）；这里我们可以在文件中加入文件头，这样php解析的时候就会认为是.xbm然后这里主

要是我们可以自定义大小；所以这里按照题目要求，定义为1337；

这里加上#的原因不用多说，看过我上篇博客的都知道，不知道的师傅，可以去翻翻；这样就伪造成了有效的.xbm文件去通过检查，这里上传.htaccess文件；

照常理来说这个题没有难度，只要写入将jpg当作php来解析就好，然后直接抓包修改就ok；但是这里我结合之前发的文章提供一种新的思路；深究用户利

用.htaccess的原理篡改配置导致的安全问题

自创；本地实测成功；

我先来个秒杀的.htaccess方法，直接在先来定义一个报错的文件在/images目录之下；名为shell.php因为是内容，这个题目的唯一缺点就是没有对文件内容中

php进行检查，所以这里我们自定义一个报错文件shell.php（并不是上传shell.php）；写入如下的一句php_value include_path "110",这里的包含目录是不

存在的，所以就会写入我们的报错日志中；也就会在/images下创建一个shell.php文件；实测发现成功；

上传.htaccess然后触发报错；创建文件。这里的shell.php不是我们的木马文件，这里我们需要再传一个文件.htaccess;

写入

1

2

#define 4c11f3876d494218ff327e3ca6ac824f_width 1337

#define 4c11f3876d494218ff327e3ca6ac824f_height 1337

http://mp.weixin.qq.com/s?__biz=MjM5MTYxNjQxOA==&mid=2652856455&idx=1&sn=d93afdeddce9c21650f2cc2258d723f1&chksm=bd591c4a8a2e955c918f8db6c1bb1b7a387503b8a11e858f998ba904ca051cc91a978184cbda&scene=21#wechat_redirect

/

这个.htaccess文件会覆盖之前的那个.htaccess文件，这里我们的images目录之下已经有一个shell.php的文件了，但是里面是我们自定义包含目录的报错信息

并不是木马；真正的木马在我们的.htaccess中；这里直接上传..htaccess(为了绕过之前的waf);这里直接传入，我们发现已经成功；因为.htaccess文件我们是

没有权限访问的是forbidden；所以我们这里借用shell.php作为跳板；访问呢shell.php触发shell；

测试发现成功;(~~没想到这种思路竟然可以成功；原创思路)

这里；如果结合之前的那个题；对文件内容中<?做了一个过滤，那么可否用这样的方法过去呢，我本地测试了一下，传入utf7编码；这里我是依然将shell包含

在了.htaccess中，并没有将其写入报错日志，所以这里实测的结果如下；传入的.htaccess如下；

/

这里我们访问一下shell.php看看还能不能继续作为跳板进行包含；这里发现如下的结果，

所以得出结论，.htaccess中修改的配置不能对其自身造成影响，比如这道题，.htaccess就不可以对自身的进行识别utf7编码进而解码包含；那么如果这么过

滤；那么我们怎么办呢；老套路，和昨天发的一样，自定义报错日志，加入报错级别确保完全写入shell，然后<?绕过用utf7编码即可；然后再传.htaccess进行

自定义目录包含，然后检测是否有unicode，然后自定义解码规则；老套路了。不过昨天那道题是我们将文件转移出html目录，这个题是无所谓；自定义在哪

里都可以，这不在过多演示了；有兴趣的师傅可以去看看深究用户利用.htaccess的原理篡改配置导致的安全问题

这里再解释一下作者的做法；他的做法，是利用AddType 来自定义了拓展名；从而导致asp文件可以被当作php文件来解析；这里我的解法要复杂一点，但是

可以利于理解.htaccess.

声明：作者初衷用于分享与普及网络知识，若读者因此作出任何危害网络安全行为后果自负，与合天智汇及原作者无关。

http://mp.weixin.qq.com/s?__biz=MjM5MTYxNjQxOA==&mid=2652856455&idx=1&sn=d93afdeddce9c21650f2cc2258d723f1&chksm=bd591c4a8a2e955c918f8db6c1bb1b7a387503b8a11e858f998ba904ca051cc91a978184cbda&scene=21#wechat_redirect

